Acknowledgement
This research was supported by research grants from the Ministry of Science and ICT, South Korea (No. 2021M3E5E3081425).
References
- Jacobsen KH. Will COVID-19 generate global preparedness? Lancet 2020;395:1013-1014. https://doi.org/10.1016/S0140-6736(20)30559-6
- World Health Organization. WHO coronavirus (COVID-19) dashboard. Geneva: World Health Organization, 2023. Accessed 2022 Jan 2. Available from: https://covid19.who.int/.
- Hale T, Sam W, Anna P, Toby P, Beatriz K. COVID-19 Government Response Tracker. Oxford: Blavatnik School of Government, 2023. Accessed 2022 Jan 2. Available from: https://www.bsg.ox.ac.uk/research/research-projects/coronavirus-government-response-tracker.
- Zhou W, Wang W. Fast-spreading SARS-CoV-2 variants: challenges to and new design strategies of COVID-19 vaccines. Signal Transduct Target Ther 2021;6:226.
- Classification of Omicron (B.1.1.529): SARS-CoV-2 variant of concern. Geneva: World Health Organization, 2023. Accessed 2022 Jan 2. Available from: https://www.who.int/news/item/26-11-2021-classification-of-omicron-(b.1.1.529)-sars-cov-2-variant-of-concern.
- Tracking SARS-CoV-2 variants. Geneva: World Health Organization, 2023. Accessed 2022 Jan 2. Available from: https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/.
- Menni C, May A, Polidori L, Louca P, Wolf J, Capdevila J, et al. COVID-19 vaccine waning and effectiveness and side-effects of boosters: a prospective community study from the ZOE COVID Study. Lancet Infect Dis 2022;22:1002-1010. https://doi.org/10.1016/S1473-3099(22)00146-3
- Haas EJ, McLaughlin JM, Khan F, Angulo FJ, Anis E, Lipsitch M, et al. Infections, hospitalisations, and deaths averted via a nationwide vaccination campaign using the Pfizer-BioNTech BNT162b2 mRNA COVID-19 vaccine in Israel: a retrospective surveillance study. Lancet Infect Dis 2022;22:357-366. https://doi.org/10.1016/S1473-3099(21)00566-1
- Lopez Bernal J, Andrews N, Gower C, Robertson C, Stowe J, Tessier E, et al. Effectiveness of the Pfizer-BioNTech and Oxford-AstraZeneca vaccines on COVID-19 related symptoms, hospital admissions, and mortality in older adults in England: test negative case-control study. BMJ 2021;373:n1088.
- Cabezas C, Coma E, Mora-Fernandez N, Li X, Martinez-Marcos M, Fina F, et al. Associations of BNT162b2 vaccination with SARS-CoV-2 infection and hospital admission and death with COVID-19 in nursing homes and healthcare workers in Catalonia: prospective cohort study. BMJ 2021;374:n1868.
- Levin EG, Lustig Y, Cohen C, Fluss R, Indenbaum V, Amit S, et al. Waning immune humoral response to BNT162b2 COVID-19 vaccine over 6 months. N Engl J Med 2021;385:e84.
- Shekhar R, Garg I, Pal S, Kottewar S, Sheikh AB. COVID-19 vaccine booster: to boost or not to boost. Infect Dis Rep 2021;13:924-929. https://doi.org/10.3390/idr13040084
- Zuo M, Khosa SK, Ahmad Z, Almaspoor Z. Comparison of COVID-19 pandemic dynamics in Asian countries with statistical modeling. Comput Math Methods Med 2020;2020:4296806.
- de la Fuente-Mella H, Rubilar R, Chahuan-Jimenez K, Leiva V. Modeling COVID-19 cases statistically and evaluating their effect on the economy of countries. Mathematics 2021;9:1558.
- Liu X, Ahmad Z, Gemeay AM, Abdulrahman AT, Hafez EH, Khalil N. Modeling the survival times of the COVID-19 patients with a new statistical model: a case study from China. PLoS One 2021;16:e0254999.
- Biggerstaff M, Cowling BJ, Cucunuba ZM, Dinh L, Ferguson NM, Gao H, et al. Early insights from statistical and mathematical modeling of key epidemiologic parameters of COVID-19. Emerg Infect Dis 2020;26:e1-e14. https://doi.org/10.3201/eid2611.201074
- Moreau VH. Forecast predictions for the COVID-19 pandemic in Brazil by statistical modeling using the Weibull distribution for daily new cases and deaths. Braz J Microbiol 2020;51:1109-1115. https://doi.org/10.1007/s42770-020-00331-z
- Roy S, Bhunia GS, Shit PK. Spatial prediction of COVID-19 epidemic using ARIMA techniques in India. Model Earth Syst Environ 2021;7:1385-1391. https://doi.org/10.1007/s40808-020-00890-y
- Singh RK, Rani M, Bhagavathula AS, Sah R, Rodriguez-Morales AJ, Kalita H, et al. Prediction of the COVID-19 pandemic for the Top 15 affected countries: advanced Autoregressive Integrated Moving Average (ARIMA) model. JMIR Public Health Surveill 2020;6:e19115.
- Zeroual A, Harrou F, Dairi A, Sun Y. Deep learning methods for forecasting COVID-19 time-series data: a comparative study. Chaos Solitons Fractals 2020;140:110121.
- Kapoor A, Ben X, Liu L, Perozzi B, Barnes M, Blais M, et al. Examining COVID-19 forecasting using spatio-temporal graph neural networks. Preprint at https://arxiv.org/abs/2007.03113 (2020).
- Arora P, Kumar H, Panigrahi BK. Prediction and analysis of COVID-19 positive cases using deep learning models: a descriptive case study of India. Chaos Solitons Fractals 2020;139:110017.
- Rauf HT, Lali MI, Khan MA, Kadry S, Alolaiyan H, Razaq A, et al. Time series forecasting of COVID-19 transmission in Asia Pacific countries using deep neural networks. Pers Ubiquitous Comput 2023;27:733-750. https://doi.org/10.1007/s00779-020-01494-0
- Fritz C, Dorigatti E, Rugamer D. Combining graph neural networks and spatio-temporal disease models to improve the prediction of weekly COVID-19 cases in Germany. Sci Rep 2022;12:3930.
- Nabi KN, Tahmid MT, Rafi A, Kader ME, Haider MA. Forecasting COVID-19 cases: a comparative analysis between recurrent and convolutional neural networks. Results Phys 2021;24:104137.
- Ndairou F, Area I, Nieto JJ, Torres DF. Mathematical modeling of COVID-19 transmission dynamics with a case study of Wuhan. Chaos Solitons Fractals 2020;135:109846.
- Panovska-Griffiths J. Can mathematical modelling solve the current Covid-19 crisis? BMC Public Health 2020;20:551.
- Kermack WO, McKendrick AG. A contribution to the mathematical theory of epidemics. Proc R Soc Lond A 1927;115:700-721. https://doi.org/10.1098/rspa.1927.0118
- Shankar S, Mohakuda SS, Kumar A, Nazneen PS, Yadav AK, Chatterjee K, et al. Systematic review of predictive mathematical models of COVID-19 epidemic. Med J Armed Forces India 2021;77:S385-S392. https://doi.org/10.1016/j.mjafi.2021.05.005
- Kucharski AJ, Russell TW, Diamond C, Liu Y, Edmunds J, Funk S, et al. Early dynamics of transmission and control of COVID-19: a mathematical modelling study. Lancet Infect Dis 2020;20:553-558. https://doi.org/10.1016/S1473-3099(20)30144-4
- OWID COVID-19 data. San Francisco: GitHub, 2023. Accessed 2022 Jan 2. Available from: https://github.com/owid/covid-19-data/tree/master/public/data.
- JHU CSSE COVID-19 Data. San Francisco: GitHub, 2022. Accessed 2022 Jan 2. Available from: https://github.com/CSSEGISandData/COVID-19.
- Codebook for the Oxford Covid-19 Government Response Tracker. San Francisco: GitHub, 2022. Accessed 2022 Jan 2. Available from: https://github.com/OxCGRT/covid-policytracker/blob/master/documentation/codebook.md.
- Oliveira EA, Oliveira MC, Colosimo EA, Simoes ES, Mak RH, Vasconcelos MA, et al. Vaccine effectiveness against SARS-CoV-2 variants in adolescents from 15 to 90 days after second dose: a population-based test-negative case-control study. J Pediatr 2023;253:189-196. https://doi.org/10.1016/j.jpeds.2022.09.039
- Mathieu E, Ritchie H, Ortiz-Ospina E, Roser M, Hasell J, Appel C, et al. A global database of COVID-19 vaccinations. Nat Hum Behav 2021;5:947-953. https://doi.org/10.1038/s41562-021-01122-8
- Korea COVID-19 Dashboard. Sejong: Ministry of Health Welfare, 2022. Accessed 2022 Jan 2. Available from: https://ncov.kdca.go.kr/en/.
- Hodcroft EB. CoVariants: SARS-CoV-2 mutations and variants of interest. CoVariants, 2021. Accessed 2022 Jan 2. Available from: https://covariants.org/.
- Khare S, Gurry C, Freitas L, Schultz MB, Bach G, Diallo A, et al. GISAID's role in pandemic response. China CDC Wkly 2021;3:1049-1051. https://doi.org/10.46234/ccdcw2021.255
- Elbe S, Buckland-Merrett G. Data, disease and diplomacy: GISAID's innovative contribution to global health. Glob Chall 2017;1:33-46. https://doi.org/10.1002/gch2.1018
- Shu Y, McCauley J. GISAID: Global initiative on sharing all influenza data - from vision to reality. Euro Surveill 2017;22:30494.
- Box GE, Jenkins GM. Time Series Analysis: Forecasting and Control. San Franciso: Holden-Day, 1970.
- Yaffee RA, McGee M. An Introduction to Time Series Analysis and Forecasting: With Applications of SAS and SPSS. Amsterdam: Elsevier, 2000.
- Darapaneni N, Reddy D, Paduri AR, Acharya P, Nithin HS. Forecasting of COVID-19 in India using ARIMA model. In: 2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), 2020 Oct 28-31, New York, NY, USA. Piscataway: Institute of Electrical and Electronics Engineers, 2020.
- Akaike H. Information theory and an extension of the maximum likelihood principle. In: 2nd International Symposium on Information Theory (Petrov N, Caski F, eds.), Akademiai Kiado, Budapest, Hungary. pp. 267-281.
- Hastie T, Tibshirani R. Generalized additive models. Stat Sci 1986;1:297-310. https://doi.org/10.1214/ss/1177013604
- Wood SN. Thin plate regression splines. J R Stat Soc Ser B Stat Methodol 2003;65:95-114. https://doi.org/10.1111/1467-9868.00374
- Wood SN. Stable and efficient multiple smoothing parameter estimation for generalized additive models. J Am Stat Assoc 2004;99:673-686. https://doi.org/10.1198/016214504000000980
- Wood SN. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J R Stat Soc Ser B Stat Methodol 2011;73:3-36. https://doi.org/10.1111/j.1467-9868.2010.00749.x
- Liboschik T, Fokianos K, Fried R. tscount: an R package for analysis of count time series following generalized linear models. J Stat Softw 2017;82:1-51. https://doi.org/10.18637/jss.v082.i05
- Gumaei A, Al-Rakhami M, Al Rahhal MM, Albogamy FR, Al Maghayreh E, AlSalman H. Prediction of COVID-19 confirmed cases using gradient boosting regression method. Comput Mater Continua 2021;66:315-329. https://doi.org/10.32604/cmc.2020.012045
- Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, et al. Lightgbm: a highly efficient gradient boosting decision tree. In: Advances in Neural Information Processing Systems (NIPS 2017), 2017 Dec, Long Beach, CA, USA. pp. 3146-3154.
- Yan B, Tang X, Liu B, Wang J, Zhou Y, Zheng G, et al. An improved method for the fitting and prediction of the number of COVID-19 confirmed cases based on LSTM. Preprint arXiv at: https://doi.org/10.48550/arXiv.2005.03446 (2020).
- Graves A, Schmidhuber J. Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Netw 2005;18:602-610. https://doi.org/10.1016/j.neunet.2005.06.042
- Monshi MM, Poon J, Chung V. Deep learning in generating radiology reports: a survey. Artif Intell Med 2020;106:101878.
- Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA 2020;323:2052-2059. https://doi.org/10.1001/jama.2020.6775
- Thanh Le T, Andreadakis Z, Kumar A, Gomez Roman R, Tollefsen S, Saville M, et al. The COVID-19 vaccine development landscape. Nat Rev Drug Discov 2020;19:305-306. https://doi.org/10.1038/d41573-020-00073-5
- Bok K, Sitar S, Graham BS, Mascola JR. Accelerated COVID-19 vaccine development: milestones, lessons, and prospects. Immunity 2021;54:1636-1651. https://doi.org/10.1016/j.immuni.2021.07.017
- Oliver SE, Gargano JW, Marin M, Wallace M, Curran KG, Chamberland M, et al. The Advisory Committee on Immunization Practices' Interim Recommendation for Use of Pfizer-BioNTech COVID-19 Vaccine - United States, December 2020. MMWR Morb Mortal Wkly Rep 2020;69:1922-1924. https://doi.org/10.15585/mmwr.mm6950e2
- Tanne JH. Covid-19: FDA panel votes to approve Pfizer BioNTech vaccine. BMJ 2020;371:m4799.
- Cascini F, Pantovic A, Al-Ajlouni Y, Failla G, Ricciardi W. Attitudes, acceptance and hesitancy among the general population worldwide to receive the COVID-19 vaccines and their contributing factors: a systematic review. EClinicalMedicine 2021;40:101113.
- Mohammed I, Nauman A, Paul P, Ganesan S, Chen KH, Jalil SMS, et al. The efficacy and effectiveness of the COVID-19 vaccines in reducing infection, severity, hospitalization, and mortality: a systematic review. Hum Vaccin Immunother 2022;18:2027160.
- Patalon T, Saciuk Y, Peretz A, Perez G, Lurie Y, Maor Y, et al. Waning effectiveness of the third dose of the BNT162b2 mRNA COVID-19 vaccine. Nat Commun 2022;13:3203.
- Piechotta V, Harder T. Waning of COVID-19 vaccine effectiveness: individual and public health risk. Lancet 2022;399:887-889. https://doi.org/10.1016/S0140-6736(22)00282-3
- Townsend JP, Hassler HB, Sah P, Galvani AP, Dornburg A. The durability of natural infection and vaccine-induced immunity against future infection by SARS-CoV-2. Proc Natl Acad Sci U S A 2022;119:e2204336119.