DOI QR코드

DOI QR Code

Abundance and Occupancy of Forest Mammals at Mijiang Area in the Lower Tumen River

두만강 하류 밀강 지역의 산림성 포유류 풍부도와 점유율

  • Hai-Long Li (Dept. of Forest Sciences, Seoul National University) ;
  • Chang-Yong Choi (Dept. of Agriculture, Forestry and Bioresources, Seoul National University)
  • 이해룡 (서울대학교 대학원 산림과학부) ;
  • 최창용 (서울대학교 농림생물자원학부 )
  • Received : 2023.10.23
  • Accepted : 2023.11.23
  • Published : 2023.12.31

Abstract

The forest in the lower Tumen River serves as an important ecosystem spanning the territories of North Korea, Russia, and China, and it provides habitat and movement corridors for diverse mammals, including the endangered Amur tiger (Panthera tigris) and Amur leopard (Panthera pardus). This study focuses on the Mijiang area, situated as a potential ecological corridor connecting North Korea and China in the lower Tumen River, playing a crucial role in conserving and restoring the biodiversity of the Korean Peninsula. This study aimed to identify mammal species and estimate their relative abundance, occupancy, and distribution based on the 48 camera traps installed in the Mijiang area from May 2019 to May 2021. The results confirmed the presence of 18 mammal species in the Mijiang area, including large carnivores like tigers and leopards. Among the dominant mammals, four species of ungulates showed high occupancy and detection rates, particularly the Roe deer (Capreolus pygargus) and Wild boar (Sus scrofa). The roe deer was distributed across all areas with a predicted high occupancy rate of 0.97, influenced by altitude, urban residential areas, and patch density. Wild boars showed a predicted occupancy rate of 0.73 and were distributed throughout the entire area, with factors such as wetland ratio, grazing intensity, and spatial heterogeneity in aspects of the landscape influencing their occupancy and detection rates. Sika deer (Cervus nippon) exhibited a predicted occupancy rate of 0.48, confined to specific areas, influenced by slope, habitat fragmentation diversity affecting detection rates, and the ratio of open forests impacting occupancy. Water deer (Hydropotes inermis) displayed a very low occupancy rate of 0.06 along the Tumen River Basin, with higher occupancy in lower altitude areas and increased detection in locations with high spatial heterogeneity in aspects. This study confirmed that the Mijiang area serves as a habitat supporting diverse mammals in the lower Tumen River while also playing a crucial role in facilitating animal movement and habitat connectivity. Additionally, the occupancy prediction model developed in this study is expected to contribute to predicting mammal distribution within the disrupted Tumen River basin due to human interference and identifying and protecting potential ecological corridors in this transboundary region.

두만강 하류의 숲은 북한, 중국, 러시아를 연결하는 중요한 산림생태계로서, 국제적인 멸종위기종인 호랑이(Panthera tigris)와 표범(Panthera pardus)을 포함한 다양한 야생동물들에게 서식환경과 이동경로를 제공하여 준다. 본 연구는 두만강 하류, 특히 중국과 북한을 연결하는 잠재적인 생태통로로서 한반도의 생물다양성 보전과 복원에 중요한 역할을 할 수 있는 밀강 지역에 초점을 맞추고 있다. 2019년 5월부터 2021년 5월까지 이 지역에 설치한 48대의 무인센서카메라를 통해 출현하는 포유류 종을 확인하고 그들의 상대개체수와 점유율 및 분포 현황을 파악하는 것을 목표로 하였다. 그 결과 총 18종의 포유류가 밀강 지역에 서식하고 있으며, 그 중에는 호랑이와 표범 등 대형 육식동물도 포함되고 있음을 확인하였다. 이 지역의 주요 포유류인 유제류 4종에 대한 점유율과 탐지율, 분포를 추정한 결과, 특히 노루(Capreolus pygargus)와 멧돼지(Sus scrofa)가 높은 점유율을 보였다. 노루는 모든 지역에 분포하며 예측 점유율은 0.97로 높게 나타났으나, 고도, 도시 주거용지, 패치 밀도 등의 영향을 받는 것으로 나타났다. 멧돼지는 0.73의 예측 점유율을 보이며 전 지역에 분포했으며, 습지 비율, 방목 강도, 사면에 대한 공간이질성 등의 인자가 점유율과 탐지율에 영향을 주었다. 꽃사슴(Cervus nippon)의 예측 점유율은 0.48로서 특정 지역에 국한되어 분포하였으며, 경사도와 서식지 파편화 다양성이 탐지율에, 방목 강도와 개방된 숲의 비율이 점유율에 각각 영향을 주었다. 고라니(Hydropotes inermis)는 아주 낮은 점유율(0.06)을 보이며 두만강 유역을 따라 분포했으며, 고도가 낮은 곳의 점유율이 높고 사면의 공간이질성이 높은 곳에서 탐지율이 높았다. 본 연구는 밀강 지역이 두만강 하류의 다양한 포유류 개체군을 유지하는 서식지인 동시에, 동물의 이동성과 서식지의 연결성을 유지하는 잠재적 생태통로로서 중요한 역할을 할 수 있음을 확인하였다. 동시에 본 연구에서 개발된 점유율 예측 모형은 향후 인간의 교란에 노출된 두만강 유역의 포유류 분포를 예측하고 국경지대의 생태통로를 파악하고 보호하는 데 기여할 수 있을 것으로 기대된다.

Keywords

Acknowledgement

이 논문은 중국 자연과학기금(National Natural Science Foundation Grant, 41830643, 31971539)과 국가과학기술 기초자원연구프로그램(National Science and Technology Basic Resources Survey Program, 2019FY101700) 및 서울대학교 연구처에서 지원하는 신임교수 연구정착금(과제번호 500-20200268)에 의하여 연구되었음.

References

  1. Beier, P. and R.F. Noss(1998) Do habitat corridors provide connectivity? Conservation Biology 12(6): 1241-1252. https://doi.org/10.1111/j.1523-1739.1998.98036.x
  2. Beirne, C.(2022) An introduction to camera trap data management and analysis in R. https://bookdown.org/c_w_beirne/wildCo-Data-Analysis/
  3. Bolker, B.M.(2008) Ecological models and data in R. Princeton University Press, Princeton, NJ, 139pp.
  4. Borger, L., B.D. Dalziel and J.M. Fryxell(2008) Are there general mechanisms of animal home range behaviour: A review and prospects for future research. Ecology Letters 11(6): 637-650. https://doi.org/10.1111/j.1461-0248.2008.01182.x
  5. Burnham, K.P. and D.R. Anderson(2002) Model selection and multimodel inference. Springer Verlag, New York, 80pp.
  6. Cardinale, B.J., J.E. Duffy, A. Gonzalez, D.U. Hooper, C. Perrings, P. Venail, A. Narwani, G.M. Mace, D. Tilman, D.A. Wardle, A.P. Kinzig, G.C. Daily, M. Loreau, J.B. Grace, A. Larigauderie, D.S. Srivastava and S. Naeem(2012) Biodiversity loss and its impact on humanity. Nature 486(7401): 59-67. https://doi.org/10.1038/nature11148
  7. Chang, H. and Q. Xiao(1988) Selection of winter habitat of red deer in Dailing region. Acta Theriologica Sinica 8(2): 81-88.
  8. Fahrig, L.(2003) Effects of habitat fragmentation on biodiversity. Annual Review of Ecology, Revolution, and Systematics 34(1): 487-515. https://doi.org/10.1146/annurev.ecolsys.34.011802.132419
  9. Feng, J.(2021). The effects of livestock grazing on flora and fauna community composition and diversity in China's Northeast Tiger and Leopard National Park. Ph.D. Dissertation, Beijing Normal University, 89pp.
  10. Feng, J., Y. Sun, H. Li, Y. Xiao, D. Zhang, J.L.D. Smith, J. Ge and T. Wang(2021) Assessing mammal species richness and occupancy in a Northeast Asian temperate forest shared by cattle. Diversity and Distributions 27(5): 857-872. https://doi.org/10.1111/ddi.13237
  11. Fischer, J. and D.B. Lindenmayer(2007) Landscape modification and habitat fragmentation: A synthesis. Global Ecology and Biogeography 16(3): 265-280. https://doi.org/10.1111/j.1466-8238.2007.00287.x
  12. Fiske, I. and R. Chandler(2011) unmarked: An R package for fitting hierarchical models of wildlife occurrence and abundance. Journal of Statistical Software 43(10): 1-23. https://doi.org/10.18637/jss.v043.i10
  13. Gergel, S.E. and M.G. Turner(2017) Learning landscape ecology: A practical guide to concepts and techniques. Springer, New York, NY, 350pp.
  14. Gilbert-Norton, L., R. Wilson, J.R. Stevens and K.H. Beard(2010) A meta-analytic review of corridor effectiveness. Conservation Biology 24(3): 660-668. https://doi.org/10.1111/j.1523-1739.2010.01450.x
  15. Hansen, M.C., P.V. Potapov, A.H. Pickens, A. Tyukavina, A. Hernandez-Serna, V. Zalles, S. Turubanova, I. Kommareddy, S.V. Stehman and X.P. Song(2022) Global land use extent and dispersion within natural land cover using Landsat data. Environmental Research Letters 17(3): 034050.
  16. Kellner, K.F., A.D. Smith, J.A. Royle, M. Kery, J.L. Belant and R.B. Chandler(2023) The unmarked R package: Twelve years of advances in occurrence and abundance modelling in ecology. Methods in Ecology and Evolution 14: 1408-1415. https://doi.org/10.1111/2041-210X.14123
  17. Konishi, S. and G. Kitagawa(2008) Information criteria and statistical modeling. Springer, New York, NY, 75276pp.
  18. Li, Y., Y. Peng, H. Li, W. Zhu, Y. Darman, D.K. Lee, T. Wang, G. Sedash, P. Pandey, A. Borzee, H. Lee and Y. Mo(2022) Prediction of range expansion and estimation of dispersal routes of water deer (Hydropotes inermis) in the transboundary region between China, the Russian Far East and the Korean Peninsula. PLoS One 17: e0264660.
  19. MacKenzie, D.I. and L.L. Bailey(2004) Assessing the fit of site-occupancy models. Journal of Agricultural, Biological, and Environmental Statistics 9: 300-318. https://doi.org/10.1198/108571104X3361
  20. MacKenzie, D.I., J.D. Nichols, J.A. Royle, K.H. Pollock, L.L. Bailey and J.E. Hines(2017) Occupancy estimation and modeling: Inferring patterns and dynamics of species occurrence. Academic Press, London, 641pp.
  21. Mazerolle, M.J.(2023) AICcmodavg: Model selection and multimodel inference based on (Q)AIC(c). R package version 2.3.2. https://cran.r-project.org/package=AICcmodavg
  22. McGariga, K., S.A. Cushman and E. Ene(2012) FRAGSTATS v4: Spatial pattern analysis program for categorical and continuous maps. University of Massachusetts, Amherst. http://www.umass.edu/landeco/research/fragstats/fragstats.html
  23. McShea, W.J., X. Shen, F. Liu, T. Wang, Z. Xiao and S. Li(2020) China's wildlife camera-trap monitoring needs a unified standard. Biodiversity Science 28(9): 1125-1131. https://doi.org/10.17520/biods.2020188
  24. Miquelle, D.G., V.V. Rozhnov, V. Ermoshin, A.A. Murzin, I.G. Nikolaev, J.A. Hernandez-Blanco and S.V. Naidenko(2015) Identifying ecological corridors for Amur tigers (Panthera tigris altaica) and Amur leopards (Panthera pardus orientalis). Integrative Zoology 10(4): 389-402. https://doi.org/10.1111/1749-4877.12146
  25. O'Brien, T.G.(2011) Abundance, density and relative abundance: A conceptual framework. In: A.F. O'Connell, J.D. Nichols and K.U. Karanth(eds.), Camera traps in animal ecology, Springer Japan, Tokyo, pp.71-96.
  26. O'Sullivan, D. and D. Unwin(2014) Geographic information analysis. Wiley, Hoboken, NJ, 432pp.
  27. Rovero, F., F. Rovero and F. Zimmermann(2016) Camera trapping for wildlife research. Pelagic Publishing, Exeter, 320pp.
  28. Sergio, F., L. Marchesi and P. Pedrini(2004) Integrating individual habitat choices and regional distribution of a biodiversity indicator and top predator. Journal of Biogeography 31(4): 619-628. https://doi.org/10.1046/j.1365-2699.2003.01002.x
  29. Sheng, Q., L. Dong and Z. Liu(2020) Suitability assessment of wild animal habitat with GIS-Take Martes zibellinain Pangu Forest Farm of Daxing' an mountains as an example. Journal of Northeast Forestry University 48(6): 157-162.
  30. Slabbekoorn, H. and M. Peet(2003) Birds sing at a higher pitch in urban noise. Nature 424(6946): 267-267. https://doi.org/10.1038/424267a
  31. Vitkalova, A.V., L. Feng, A.N. Rybin, B.D. Gerber, D.G. Miquelle, T. Wang, H. Yang, E.I. Shevtsova, V.V. Aramilev and J. Ge(2018) Transboundary cooperation improves endangered species monitoring and conservation actions: A case study of the global population of Amur leopards. Conservation Letters 11(5): e12574.
  32. Xiao, W.(2014) Amur tiger (Panthera tigris) and its prey in Hunchun Nature Reserve, Jilin, China: Their population size, distribution and occupancy. Ph.D. Dissertation, Beijing Normal University. (in Chinese)
  33. Xiao, W., Z. Shu, L. Chen, W. Yao, Y. Ma, Y. Zhang and Z. Xiao(2019) Using occupancy models in wildlife camera-trap ping monitoring and the study case. Biodiversity Science 27(3): 249-256.
  34. Yang, H., H. Dou, R.K. Baniya, S. Han, Y. Guan, B. Xie, G. Zhao, T. Wang, P. Mou, L. Feng and J. Ge(2018) Seasonal food habits and prey selection of Amur tigers and Amur leopards in Northeast China. Scientific Reports 8(1): 6930.
  35. Yu, J., X. Yi, S. Yu, Y. Xu, X. Mi and H. Ren(2020) Analysis on ecological integrity of Qianjiangyuan National Park based on landscape pattern index. Journal of Zhejiang Forest Science and Technology 40(4): 30-36.
  36. Zhang, P., X. Liu, W. Zhu, C. Li, R. Jin, H. Yan, C. Gu and J. Wang(2023) Spatio-temporal changes in water conservation ecosystem service during 1990-2019 in the Tumen River Basin, Northeast China. Chinese Geographical Science 33(1): 102-115. https://doi.org/10.1007/s11769-023-1328-2
  37. Zhang, X., X. Ning, H. Wang, X. Zhang, Y. Liu and W. Zhang (2022) Quantitative assessment of the risk of human activities on landscape fragmentation: A case study of Northeast China Tiger and Leopard National Park. Science of the Total Environment 851: 158413.
  38. Zheng, X.J., P. Sun, W.H. Zhu, Z. Xu, J. Fu, W.D. Man, H.L. Li, J. Zhang and L. Qin(2017) Landscape dynamics and driving forces of wetlands in the Tumen River Basin of China over the past 50 years. Landscape and Ecological Engineering 13(2): 237-250. https://doi.org/10.1007/s11355-016-0304-8
  39. Zhu, W., C. Miao, X. Zheng, G. Cao and F. Wang(2014) Study on ecological safety evaluation and warning of wetlands in Tumen River watershed based on 3S technology. Acta Ecologica Sinica 34(6): 1379-1390.
  40. Zhu, W.H. and K.G. Kim(2002) A study on the classification and characteristics of wetlands: Cases on the watershed of Tumen River downstream in China. Journal of the Korean Society of Environmental Restoration Technology 5: 35-50.