DOI QR코드

DOI QR Code

한국인의 폐선암 유전자 돌연변이: 차세대 염기서열 분석법을 이용한 검출 및 기존 유전자 검사법과의 일치도 분석

Lung Adenocarcinoma Gene Mutation in Koreans: Detection Using Next Generation Sequence Analysis Technique and Analysis of Concordance with Existing Genetic Test Methods

  • 백재하 (신한대학교 임상병리학과) ;
  • 조규봉 (신한대학교 임상병리학과)
  • Jae Ha BAEK (Department of Biomedical Laboratory Science, Shinhan University) ;
  • Kyu Bong CHO (Department of Biomedical Laboratory Science, Shinhan University)
  • 투고 : 2023.02.15
  • 심사 : 2023.03.18
  • 발행 : 2023.03.31

초록

폐암은 크게 소세포성 폐암과 비소세포성 폐암으로 구분되며 비소세포성폐암이 차지하는 비율은 약 70%~80%이다. 비소세포성폐암 중 폐선암은 전체 폐암의 약 40%를 차지한다. 최근 유전자 프로파일링 기술이 발전하면서 종양의 발생 및 성장에 중요한 종양 유전자와 종양 억제 유전자의 변이에 대한 연구가 활발히 진행되어 폐암을 유발하는 특정 유전자들이 발견되면서 생존율에 큰 영향을 미치게 되었으며 특히 폐선암은 차세대 염기서열 분석법(next generation sequencing, NGS)을 이용한 동반진단을 통해 표적 치료로 생존을 높이는 데 도움을 얻을 수 있다. 본 연구는 한국인에서 폐선암을 유발하는 유전자 변이 검출을 위해 비소세포성폐암 환자의 파라핀 포매조직(formalin-fixed paraffin-embedded)으로 hematoxylin and eosin 염색을 시행하여 폐선암을 구분하였으며 정확한 폐선암 조직을 분류하기 위해 면역조직화학(immunohistochemistry, IHC)염색을 시행하였다. 그 결과를 바탕으로 NGS를 이용하여 유전자 변이의 종류와 패턴을 분석하였고 폐암을 유발하는 가장 대표적인 원인인 흡연과의 관계를 확인하였다. NGS 결과 단일염기서열변이(single nucleotide variation, SNV), 복제수변이 (copy number variation, CNV), 유전자 재배열을 확인하였으며 폐선암에서 SNV는 TP53 (44.6%), EGFR (35.7%), KRAS (10.7%), PIK3CA (6.2%), CDKN2A (4.4%) 순으로 발생하였고 CNV의 경우 EGFR (14%)이 가장 빈번하게 발생하였다. 또한 ALK, ROS1, RET 과 같은 유전자 재배열을 확인하였다. NGS의 신뢰도를 확인을 위하여 기존에 사용되고 있는 유전자 검사방법인 PCR-EGFR, IHC-ALK (D5F3), FISH-ROS1 검사를 추가적으로 시행하여 NGS 결과와 일치도를 확인하였다. 이 연구는 폐선암 환자에 대한 NGS가 여러 유전자의 돌연변이를 동시에 확인하여 치료 전략에 더욱 긍정적인 이익을 줄 수 있음을 보여준다.

Lung adenocarcinoma accounts for about 40% of all lung cancers. With the recent development of gene profiling technology, studies on mutations in oncogenes and tumor suppressor genes, which are important for the development and growth of tumors, have been actively conducted. Companion diagnosis using next-generation sequencing helps improve survival with targeted therapy. In this study, formalin-fixed paraffin-embedded tissues of non-small cell lung cancer patients were subjected to hematoxylin and eosin staining for detecting genetic mutations that induce lung adenocarcinoma in Koreans. Immunohistochemical staining was also performed to accurately classify lung adenocarcinoma tissues. Based on the results, next-generation sequencing was applied to analyze the types and patterns of genetic mutations, and the association with smoking was established as the most representative cause of lung cancer. Results of next-generation sequencing analysis confirmed the single nucleotide variations, copy number variations, and gene rearrangements. In order to validate the reliability of next-generation sequencing, we additionally performed the existing genetic testing methods (polymerase chain reaction-epidermal growth factor receptor, immunohistochemistry-anaplastic lymphoma kinase (D5F3), and fluorescence in situ hybridiation-receptor tyrosine kinase 1 tests) to confirm the concordance rates with the next-generation sequencing test results. This study demonstrates that next-generation sequencing of lung adenocarcinoma patients simultaneously identifies mutation.

키워드

과제정보

This article is a condensed form of the first author's doctoral thesis.

참고문헌

  1. Korea Central Cancer Registry. Annual report of cancer statistics in Korea, 2019 [Internet]. Goyang: Korea Central Cancer Registry; [cited 2021 December 30]. Available from: https://www.ncc.re.kr/cancerStatsView.ncc?bbsnum=578&searchKey=total&searchValue=&pageNum=1 
  2. Union for International Cancer Control (UICC). Global cancer data: GLOBOCAN 2018 [Internet]. Geneva: UICC; [cited 2018 September 12]. Available from: https://www.uicc.org/news/global-cancer-data-globocan-2018 
  3. International Agency for Research on Cancer (IARC). Cancer topics: tabacco [2002 November 4] [Internet]. Lyon: IARC; [cited 2022 November 4]. Available from: https://www.iarc.who.int/news-events/lung-cancer-awareness-month-2022/ 
  4. El-Telbany A, Ma PC. Cancer genes in lung cancer: racial disparities: are there any? Genes Cancer. 2012;3:467-480. https://doi.org/10.1177/1947601912465177 
  5. Hirsch FR, Scagliotti GV, Mulshine JL, Kwon R, Curran WJ Jr, Wu YL, et al. Lung cancer: current therapies and new targeted treatments. Lancet. 2017;389:299-311. https://doi.org/10.1016/S0140-6736(16)30958-8 
  6. Goldstraw P, Ball D, Jett JR, Le Chevalier T, Lim E, Nicholson AG, et al. Non-small-cell lung cancer. Lancet. 2011;378:1727-1740. https://doi.org/10.1016/S0140-6736(10)62101-0 
  7. Zappa C, Mousa SA. Non-small cell lung cancer: current treatment and future advances. Transl Lung Cancer Res. 2016;5:288-300. https://doi.org/10.21037/tlcr.2016.06.07 
  8. Chan BA, Hughes BG. Targeted therapy for non-small cell lung cancer: current standards and the promise of the future. Transl Lung Cancer Res. 2015;4:36-54. https://doi.org/10.3978/j.issn.2218-6751.2014.05.01 
  9. Van Allen EM, Wagle N, Stojanov P, Perrin DL, Cibulskis K, Marlow S, et al. Whole-exome sequencing and clinical interpretation of formalin-fixed, paraffin-embedded tumor samples to guide precision cancer medicine. Nat Med. 2014;20:682-688. https://doi.org/10.1038/nm.3559 
  10. U.S. Food and Drug Administration (FDA). Next generation sequencing oncology panel, somatic or germline variant detection system [Internet]. Silver Spring: FDA; [cited 2019 June 24]. Available from: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpma/pma.cfm?id=p170019 
  11. Desai A, Menon SP, Dy GK. Alterations in genes other than EGFR/ALK/ROS1 in non-small cell lung cancer: trials and treatment options. Cancer Biol Med. 2016;13:77-86. https://doi.org/10.28092/j.issn.2095-3941.2016.0008 
  12. Tsimberidou AM, Elkin S, Dumanois R, Pritchard D. Clinical and economic value of genetic sequencing for personalized therapy in non-small-cell lung cancer. Clin Lung Cancer. 2020;21:477-481. https://doi.org/10.1016/j.cllc.2020.05.029 
  13. Einaga N, Yoshida A, Noda H, Suemitsu M, Nakayama Y, Sakurada A, et al. Assessment of the quality of DNA from various formalin-fixed paraffin-embedded (FFPE) tissues and the use of this DNA for next-generation sequencing (NGS) with no artifactual mutation. PLoS One. 2017;12:e0176280. https://doi.org/10.1371/journal.pone.0176280 
  14. Osmani L, Askin F, Gabrielson E, Li QK. Current WHO guidelines and the critical role of immunohistochemical markers in the subclassification of non-small cell lung carcinoma (NSCLC): moving from targeted therapy to immunotherapy. Semin Cancer Biol. 2018;52(Pt 1):103-109. https://doi.org/10.1016/j.semcancer.2017.11.019 
  15. Uruga H, Mino-Kenudson M. ALK (D5F3) CDx: an immunohistochemistry assay to identify ALK-positive NSCLC patients. Pharmgenomics Pers Med. 2018;11:147-155. https://doi.org/10.2147/PGPM.S156672 
  16. Myers DJ, Wallen JM. Lung adenocarcinoma [Internet]. Treasure Island: StatPearls Publishing; [cited 2022 June 21]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK519578/ 
  17. Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014;511:543-550. https://doi.org/10.1038/nature13385 Erratum in: Nature. 2014;514:262. Erratum in: Nature. 2018;559:E12. 
  18. Yatabe Y, Kerr KM, Utomo A, Rajadurai P, Tran VK, Du X, et al. EGFR mutation testing practices within the Asia Pacific region: results of a multicenter diagnostic survey. J Thorac Oncol. 2015;10:438-445. https://doi.org/10.1097/JTO.0000000000000422 
  19. Kawaguchi T, Matsumura A, Fukai S, Tamura A, Saito R, Zell JA, et al. Japanese ethnicity compared with Caucasian ethnicity and never-smoking status are independent favorable prognostic factors for overall survival in non-small cell lung cancer: a collaborative epidemiologic study of the National Hospital Organization Study Group for Lung Cancer (NHSGLC) in Japan and a Southern California Regional Cancer Registry databases. J Thorac Oncol. 2010;5:1001-1010. https://doi.org/10.1097/JTO.0b013e3181e2f607 
  20. Chun YJ, Choi JW, Hong MH, Jung D, Son H, Cho EK, et al. Molecular characterization of lung adenocarcinoma from Korean patients using next generation sequencing. PLoS One. 2019;14:e0224379. https://doi.org/10.1371/journal.pone.0224379 
  21. Husgafvel-Pursiainen K, Boffetta P, Kannio A, Nyberg F, Pershagen G, Mukeria A, et al. p53 mutations and exposure to environmental tobacco smoke in a multicenter study on lung cancer. Cancer Res. 2000;60:2906-2911. 
  22. Kohno T, Nakaoku T, Tsuta K, Tsuchihara K, Matsumoto S, Yoh K, et al. Beyond ALK-RET, ROS1 and other oncogene fusions in lung cancer. Transl Lung Cancer Res. 2015;4:156-164. https://doi.org/10.3978/j.issn.2218-6751.2014.11.11 
  23. Cao B, Wei P, Liu Z, Bi R, Lu Y, Zhang L, et al. Detection of lung adenocarcinoma with ROS1 rearrangement by IHC, FISH, and RT-PCR and analysis of its clinicopathologic features. Onco Targets Ther. 2015;9:131-138. https://doi.org/10.2147/OTT.S94997