Acknowledgement
본 연구는 산업통상자원부(MOTIE)와 한국에너지기술평가원(KETEP)의 지원을 받아 수행한 연구 과제입니다. (No. 20202020800360)
References
- ASHRAE, (2017). ASHRAE Handbook: Fundamentals 2017, ASHRAE.
- Augenbroe, G. (2019). The role of simulation in performance-based building. In Building performance simulation for design and operation (pp. 343-373). Routledge.
- Curcija C., Vidanovic S., Hart R., Jonsson J., Powles R. & Mitchell R. (2018). WINDOW Technical Documentation. Lawrence Berkeley National Laboratory. https://windows.lbl.gov/tools/window/documentation
- de Wilde, P. (2014). The gap between predicted and measured energy performance of buildings: A framework for investigation. Automation in construction, 41, 40-49. https://doi.org/10.1016/j.autcon.2014.02.009
- Hopfe, C. J., & Hensen, J. L. (2011). Uncertainty analysis in building performance simulation for design support. Energy and Buildings, 43(10), 2798-2805. https://doi.org/10.1016/j.enbuild.2011.06.034
- Huchuk, B., Gunay, H. B., O'Brien, W., & Cruickshank, C. A. (2016). Model-based predictive control of office window shades. Building Research & Information, 44(4), 445-455. https://doi.org/10.1080/09613218.2016.1101949
- ISO. (2003). Thermal performance of windows, doors and shading devices - Detailed calculations (ISO Standard No. 15099). Retrieved from https://www.iso.org/standard/26425.html
- Kim, D. W., & Park, C. S. (2010). Energy performance assessment of a double skin facade with different control strategies. J. Archit. Inst. Korea, 26, 389-398.
- Kim, D. W., & Park, C. S. (2012). Comparative control strategies of exterior and interior blind systems. Lighting Research & Technology, 44(3), 291-308. https://doi.org/10.1177/1477153511433996
- Kohler C., Mitchell R., Curcija C., Vidanovic D. & Cza rnecki S. (2019). Berkeley Lab WINDOW Calc Engine (CalcEngine) v2. https://github.com/LBNL-ETA/pyWinCalc/tree/develop
- KS L 9107 (2014). Testing method for the determination of solar heat gain coefficient of fenestration product using solar simulator.
- LBNL(Lawrence Berkeley National Laboratory). (2016). WINDOW, http://windows.lbl.gov/software/window
- LBNL(Lawrence Berkeley National Laboratory). (2022). IGSDB web application. Retrieved from https://igsdb.lbl.gov/
- Mara, T. A., & Tarantola, S. (2008). Application of global sensitivity analysis of model output to building thermal simulations. In Building Simulation (Vol. 1, No. 4, pp. 290-302). Springer Berlin Heidelberg. https://doi.org/10.1007/s12273-008-8129-5
- May-Ostendorp, P.T., Henze, G. P., Rajagopalan, B., & Corbin, C. D. (2012). Extraction of supervisory building control rules from model predictive control of windows in a mixed mode building. Journal of Building Performance Simulation, 6(3), 199-219. https://doi.org/10.1080/19401493.2012.665481
- NFRC (National Fenestration Rating Council). (2020). Procedure for Determining Fenestration Product Solar Heat Gain Coefficient and Visible Transmittance at Normal Incidence (NFRC Standard No. 200). Retrieved from http://www.nfrc.org
- Kreider, J. F., Reddy, T. A., Curtiss, P. S., & Rabl, A. (2016). Heating and cooling of buildings: principles and practice of energy efficient design. CRC press.
- Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., & Tarantola, S. (2008). Global sensitivity analysis: the primer. John Wiley & Sons.
- Sobol, I. M. (1993). Sensitivity analysis for non-linear mathematical models. Mathematical modelling and computational experiment, 1, 407-414.