• Title/Summary/Keyword: Controllable Shading System

Search Result 2, Processing Time 0.013 seconds

A Study on the Installation Angle of the Marine Solar Power Generation System (해상용 태양광 발전 시스템의 설치 각도에 관한 연구)

  • Oh, Jin-Seok;Jang, Jae-Hee
    • Journal of Navigation and Port Research
    • /
    • v.42 no.3
    • /
    • pp.167-176
    • /
    • 2018
  • A solar power generation system on single point moored offshore plant has independent power system In order to satisfy the maritime environment and account for the number of sunless days, it is important to supply stable electric power to the systems. For these reasons, solar panels are installed in multiple directions. However, a partial shading effect occurs because the amount of light incident on each panel is different. The generated power by the solar generation system installed on land is affected by the latitude, then it is installed at an angle of 30 to $45^{\circ}$. in the case of Korea. In the case of a solar power generation system installed in a mooring type of marine plant, there is a possibility that the maximum power point is outside of the controllable range due to the partial shading effect. Therefore, a power generation loss occurs. By reducing the light amount difference between both panels, the maximum power point can exist in a range where the MPPT algorithm can track the power. The purpose is so the power generation efficiency can be further increased. In this paper, simulation results show that the highest power generation efficiency is obtained at an installation angle of $20^{\circ}$.

Optimized slat angle control algorithm prediction of venetian blind depending on window orientation for energy saving (건물에너지 저감을 위한 향별 슬랫형 블라인드의 최적각도 제어 알고리즘 산출)

  • Kwon, Hyuk-Ju;Lee, Keum-Ho;Lee, Kwang
    • KIEAE Journal
    • /
    • v.17 no.3
    • /
    • pp.99-106
    • /
    • 2017
  • Purpose: Most modern office buildings adopt the curtain wall system in order to provide occupants with the sense of openness and high-technology, which requires large window area. As a result, the amount of solar radiation increases, negatively affecting cooling load during the summer and increasing energy costs. However, the performance of window itself is not sufficiently controllable parameter to control thermal comfort and solar radiation. Therefore, a shading device such as venetian blind is required to control them and thus a variety of studies have been performed thus far. So, the purpose of this study is to improve the performance of blind through the development of blind control algorithm. Method: Among various input variables for the control of venetian blinds, the vertical solar radiation has been selected in this study as the primary input variable and the optimal control algorithm for venetian blinds were developed for each window orientation. Result: The developed optimal control algorithm has a positive effect on building energy savings.