DOI QR코드

DOI QR Code

일반 철근 배근 상세를 갖는 강섬유 보강 콘크리트 연결보의 전단강도 평가

Shear Strength Evaluation of Steel Fiber Reinforced Concrete Coupling Beams with Conventional Reinforcements Details

  • 송성휘 (한양대학교 대학원 건축공학과) ;
  • 손동희 (한양대학교 대학원 건축공학과) ;
  • 배백일 (한양사이버대학교 디지털건축도시공학과) ;
  • 최창식 (한양대학교 건축공학부)
  • 투고 : 2022.11.07
  • 심사 : 2023.01.05
  • 발행 : 2023.02.28

초록

본 연구의 목적은 기존 연결보의 사인장 파괴를 방지하고 연결보의 전단강도를 증가시키며 증가분을 정량적으로 평가하는 것이다. 강섬유는 전단강도를 향상시키고 파괴 메커니즘을 부분적으로 변화시킬 수 있지만 이는 일반적인 RC보와 기둥에 대한 연구결과이며, 강섬유 보강콘크리트에 대한 연결보의 전단강도 증진에 대한 연구는 아직까지 부족한 실정이다. 따라서, 강섬유에 의한 증가된 전단강도와 이에 따른 파괴 메커니즘 변화를 확인하기 위해 강섬유의 혼입률을 변수(0%, 1%, 2%)로 세 개의 실험체를 제작하여 반복가력 실험을 수행하였다. 그 결과, 강섬유를 보강한 실험체(1%, 2%)가 그렇지 않은 실험체(0%) 대비 최대강도 발현 후 콘크리트의 전단저항 기여분이 증가됨에 따라 전단강도가 증진되었다.

The purpose of this study is to prevent diagonal tension failure of existing conventional coupling beams, increase the shear strength of conventional coupling beams, and quantitatively evaluate the increase. Steel fibers can improve shear strength and partially change the failure mechanism, but this is the result of research on general RC beams and columns, and research on the shear strength enhancement of conventional coupling beams for steel fiber reinforced concrete is still lacking. Therefore, in order to confirm the increased shear strength caused by steel fiber and the resulting change in failure mechanism, three specimens were fabricated with the steel fiber volume fraction as a variable (0%, 1%, 2%) and repeated loading experiments were performed. As a result, the shear strength of the specimens reinforced with steel fibers (1%, 2%) increased as the shear resistance contribution of concrete increased after the maximum strength was developed compared to the specimens without it (0%).

키워드

과제정보

이 연구는 2021년도 정부(과학기술정보통신부) 연구비 지원에 의한 결과의 일부임(과제번호: NRF-2020R1A4A1019 074).

참고문헌

  1. ACI 318-19. (2019), Building code requirement for structural concrete and commentary, ACI Committee 318, American Concrete Institute.
  2. ACI 374.2R-13. (2013), Guide for testing reinforced concrete structural elements under slowly applied simulated seismic load, ACI Committee 374, American concrete Institute.
  3. ACI 544.4R-88. (2017), Design considerations for steel fiber reinforced concrete, ACI Committee 544, American Concrete Institute.
  4. Architectural Institute of Korea. (2016), Korean building code and commentary, Architectural Institute of Korea. (in Korean).
  5. Arnon, B., and Sidney, M. (1990), Fibre Reinforced Cementitious Composites, Taylor & Franscis.
  6. ASCE 41-17. (2017), Seismic evaluation and retrofit rehabilitation of existing buildings. Proceedings of the SEAOC.
  7. Cai, G., Zhao, J., Degee, H., and Vandoren, B. (2016), Shear capacity of steel fibre reinforced concrete coupling beams using conventional reinforcements, Engineering Structures, 128, 428-440. https://doi.org/10.1016/j.engstruct.2016.09.056
  8. Chung, J. H., Son, D. H., Kim, S. Y., Bae, B. I., and Choi, C. S. (2020), Hysteretic Behavior of Reinforced Concrete Coupling Beams According to Volume Fraction of Steel Fiber, Sustainability, 13(1), 182.
  9. Zhao, J., Li, K., Shen, F., Zhang, X., and Si, C. (2018), An analytical approach to predict shear capacity of steel fiber reinforced concrete coupling beams with small span-depth ratio, Engineering Structures, 171, 348-361. https://doi.org/10.1016/j.engstruct.2018.05.072
  10. Kim, C. G., Park, H. G., Hong, G. H., and Kang, S. M. (2015), Evaluation on Shear Contribution of Steel Fiber Reinforced Concrete in Place of Minimum Shear Reinforcement, Journal of the Korea Concrete Institute, 27(6), 603-613. (in Korean). https://doi.org/10.4334/JKCI.2015.27.6.603
  11. KS F 2405. (2014), Standard test method for compressive strength of concrete, Korean Agency for Technology and Standards, 1-16. (in Korean).
  12. KS F 2408. (2016), Method of test for flexural strength of concrete, Korean Agency for Technology and Standards, 1-16. (in Korean).
  13. KS F 2423. (2016), Method of test for splitting tensile strength of concrete, Korean Agency for Technology and Standards, 1-12. (in Korean).
  14. Paulay, T. (1971), Coupling Beams of Reinforced Concrete Shear Walls, Journal of the Structural Division, 97(3), 843-862. https://doi.org/10.1061/JSDEAG.0002848
  15. Seo, S. Y., Yun, H. D., and Chun, Y. S. (2017), Hysteretic Behavior of Conventionally Reinforced Concrete Coupling Beams in Reinforced Concrete Coupled Shear Wall. International Journal of Concrete Structures and Materials, 11, 599-616. https://doi.org/10.1007/s40069-017-0221-8
  16. Kim, K. H. (2021), Shear strength Evaluation According to Steel Fiber Volume Fraction of Reinforced COncrete Conventional Coupling Beams, Master's thesis, Hanyang university. (in Korean).