DOI QR코드

DOI QR Code

Hardware-simulator development and implementation of battery charger for personal mobility devices

  • Yeongsu Bak (Department of Electrical Energy Engineering, Keimyung University)
  • 투고 : 2022.09.23
  • 심사 : 2022.12.09
  • 발행 : 2023.02.20

초록

Recently, research on personal mobility devices (PMDs) such as electric motorcycles, electric bikes, electric scooters, and electric wheelchairs has been globally proceeded. However, PMDs have a disadvantage since the required battery voltage is different depending on the type of PMD. Therefore, to charge the battery of a PMD, an individual battery charger should be used depending on type of PMD which reduces industrial usability and availability of PMDs. To solve this problem, a battery charger capable of responding to various battery voltages is required. In this paper, the hardware-simulator development of a battery charger that can respond to the various battery voltages of PMDs is proposed, and it consists of a boost converter, a half-bridge series resonant converter, and a buck converter. Additionally, this paper presents a control strategy for use in the proposed hardware simulator. The effectiveness of the proposed hardware simulator and its control strategy are verified by experimental results.

키워드

과제정보

This research was financially supported by the Ministry of Small and Medium-sized Enterprises (SMEs) and Startups (MSS), Korea, under the "Regional Specialized Industry Development Plus Program(R&D, S3063058)" supervised by the Korea Technology and Information Promotion Agency for SMEs.

참고문헌

  1. Liberto, C., Valenti, G., Orchi, S., Lelli, M., Nigro, M., Ferrara, M.: The impact of electric mobility scenarios in large urban areas: the rome case study. IEEE Trans. Intell. Transp. Syst. 19(11), 3540-3549 (2018) https://doi.org/10.1109/tits.2018.2832004
  2. Diaz, C., Quintero, V., Perez, A., Jaramillo, F., Burgos-Mellado, C., Rozas, H., Orchard, M.E., Saez, D., Cardenas, R.: Particle-filtering-based prognostics for the state of maximum power available in lithium-ion batteries at electromobility applications. IEEE Trans. Veh. Technol. 69(7), 7187-7200 (2020) https://doi.org/10.1109/TVT.2020.2993949
  3. Shousha, M., Prodic, A., Marten, V., Milios, J.: Design and implementation of assisting converter-based integrated battery management system for electromobility applications. IEEE J. Emerg. Sel. Topics Power Electron 6(2), 825-842 (2018) https://doi.org/10.1109/JESTPE.2017.2736166
  4. Delia, A., Viola, F., Montori, F., Felice, M.D., Bedogni, L., Bononi, L., Borghetti, A., Azzoni, P., Bellavista, P., Tarchi, D., Mock, R., Cinotti, T.S.: Impact of interdisciplinary research on planning, running, and managing electromobility as a smart grid extension. IEEE Access 3, 2281-2305 (2015) https://doi.org/10.1109/ACCESS.2015.2499118
  5. Cao, Y., Kaiwartya, O., Han, C., Wang, K., Song, H., Aslam, N.: Toward distributed battery switch based electro-mobility using publish/subscribe system. IEEE Trans. Veh. Technol. 67(11), 10204-10217 (2018) https://doi.org/10.1109/tvt.2018.2870780
  6. Lim, S.-K., Lee, H.-S., Cha, H.-R., Park, S.-J.: Multi-level DC/DC converter for E-mobility charging stations. IEEE Access 8, 48774-48783 (2020) https://doi.org/10.1109/access.2020.2977663
  7. Babin, A., Rizoug, N., Mesbahi, T., Boscher, D., Hamdoun, Z., Larouci, C.: Total cost of ownership improvement of commercial electric vehicles using battery sizing and intelligent charge method. IEEE Trans. Ind. Appl. 54(2), 1691-1700 (2018) https://doi.org/10.1109/tia.2017.2784351
  8. Li, D., Zhang, Z., Liu, P., Wang, Z., Zhang, L.: Battery fault diagnosis for electric vehicles based on voltage abnormality by combining the long short-term memory neural network and the equivalent circuit model. IEEE Trans. Power Electron. 36(2), 1303-1315 (2021) https://doi.org/10.1109/tpel.2020.3008194
  9. Kim, D.-H., Kim, M.-J., Lee, B.-K.: An integrated battery charger with high power density and efficiency for electric vehicles. IEEE Trans. Power Electron. 32(6), 4553-4565 (2017) https://doi.org/10.1109/TPEL.2016.2604404
  10. Lee, H., Cha, S.W.: Energy management strategy of fuel cell electric vehicles using model-based reinforcement learning with data-driven model update. IEEE Access 9, 59244-59254 (2021) https://doi.org/10.1109/ACCESS.2021.3072903
  11. Hu, X., Jiang, J., Egardt, B., Cao, D.: Advanced power-source integration in hybrid electric vehicles: multicriteria optimization approach. IEEE Trans. Ind. Electron. 62(12), 7847-7858 (2015) https://doi.org/10.1109/TIE.2015.2463770
  12. Yan, Y., Li, Q., Huang, W., Chen, W.: Operation optimization and control method based on optimal energy and hydrogen consumption for the fuel cell/supercapacitor hybrid tram. IEEE Trans. Ind. Electron. 68(2), 1342-1352 (2021) https://doi.org/10.1109/TIE.2020.2967720
  13. Tian, Y., Zou, Q., Lin, Z.: Hydrogen leakage diagnosis for proton exchange membrane fuel cell systems: methods and suggestions on its application in fuel cell vehicles. IEEE Access 8, 224895-224910 (2020) https://doi.org/10.1109/ACCESS.2020.3044362
  14. Takahashi, Y.: Development of a personal mobility vehicle for short-range transportation support. Proc. Int. Conf. Intellig. Sys. Model. Simul. 25, 295-297 (2016)
  15. Pham, T.Q., Nakagawa, C., Shintani, A., Ito, T.: Evaluation of the effects of a personal mobility vehicle on multiple pedestrians using personal space. IEEE Trans. Intell. Transp. Syst. 16(4), 2028-2037 (2015) https://doi.org/10.1109/TITS.2014.2388219
  16. Nakajima, S.: Evaluation of the mobility performance of a personal mobility vehicle for steps. IEEE Access 5, 9748-9756 (2017) https://doi.org/10.1109/ACCESS.2017.2700323
  17. Tomita, K., Hashimoto, N., Kamimura, A., Yokozuka, M., Matsumoto, O.: Experimental examination and simulation analysis of standing-type personal mobility device sharing. Proc. Conf. Open Innov. Assoc. 25, 248-255 (2016)
  18. Neste, C.W.V., Phani, A., Hull, R., Hawk, J.E., Thundat, T.: Quasiwireless capacitive energy transfer for the dynamic charging of personal mobility vehicles. Proc. IEEE PELS Workshop Emerg. Technol. 4, 196-199 (2016)
  19. Kwag, S.I., Hur, U., Ko, Y.D.: Sustainable electric personal mobility: the design of a wireless charging infrastructure for urban tourism. Sustainability 13(3), 1270 (2021)
  20. Hayashi, H., Hata, K., Sasatani, T., Sato, H., Yamamura, R., Seong, Y. A., Niiyama, R., and Kawahara, Y.: Effect of body materials on transmission efficiency and resonant frequency in wirelessly powered personal mobility devices. In: Proc. IEEE Wireless Power Transfer Conference, pp. 183-186 (2020)
  21. Huang, Y., Kamezaki, M., Mori, T., Manawadu, U. E., Ishihara, T., Nakano, M., Koshiji, K., Higo, N., Tubaki, T., and Sugano, S.: Machine learning based skill-level classification for personal mobility devices using only operational characteristics. Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5469-5476 (2018)
  22. Hayashi, H., Sasatani, T., Narusue, Y., and Kawahara, Y.: Design of wireless power transfer systems for personal mobility devices in city spaces. Proc. IEEE Vehicular Technology Conference, pp. 1-5 (2019)
  23. Ibanez, F.M., Florez, A.M.B., Gutierrez, S., Echeverrria, J.M.: Extending the autonomy of a battery for electric motorcycles. IEEE Trans. Veh. Technol. 68(4), 3294-3305 (2019) https://doi.org/10.1109/tvt.2019.2896901
  24. Hanifah, R.A., Toha, S.F., Hanif, N.H.H., Kamisan, N.A.: Electric motorcycle modeling for speed tracking and range travelled estimation. IEEE Access 7, 26821-26829 (2019) https://doi.org/10.1109/access.2019.2900443
  25. Liao, C.-C., Huang, M.-S., Li, Z.-F., Lin, F.-J., Wu, W.-T.: Simulation-assisted design of a bidirectional wireless power transfer with circular sandwich coils for E-bike sharing system. IEEE Access 8, 110003-110017 (2020) https://doi.org/10.1109/ACCESS.2020.3000564
  26. Lin, J., Schofeld, N., Emadi, A.: External-rotor 6-10 switched reluctance motor for an electric bicycle. IEEE Trans. Transp. Electrif. 1(4), 348-356 (2015) https://doi.org/10.1109/TTE.2015.2502543
  27. Pandey, R., Singh, B.: A cuk converter and resonant LLC converter based E-bike charger for wide output voltage variations. IEEE Trans. Ind. Appl. 57(3), 2682-2691 (2021) https://doi.org/10.1109/TIA.2021.3066089
  28. Martinez-Navarro, A., Cloquell-Ballester, V.-A., Segui-Chilet, S.: Photovoltaic electric scooter charger dock for the development of sustainable mobility in urban environments. IEEE Access 8, 169486-169495 (2020) https://doi.org/10.1109/access.2020.3023881
  29. Hu, J.-S., Lu, F., Zhu, C., Cheng, C.-Y., Chen, S.-L., Ren, T.-J., Mi, C.C.: Hybrid energy storage system of an electric scooter based on wireless power transfer. IEEE Trans. Ind. Informat. 14(9), 4169-4178 (2018) https://doi.org/10.1109/tii.2018.2806917
  30. Pellegrino, G., Armando, E., Guglielmi, P.: An integral battery charger with power factor correction for electric scooter. IEEE Trans. Power Electron. 25(3), 751-759 (2010) https://doi.org/10.1109/TPEL.2009.2033187
  31. Hsu, Y.-C., Kao, S.-C., Ho, C.-Y., Jhou, P.-H., Lu, M.-Z., Liaw, C.-M.: On an electric scooter with G2V/V2H/V2G and energy harvesting functions. IEEE Trans. Power Electron. 33(8), 6910-6925 (2018) https://doi.org/10.1109/TPEL.2017.2758642
  32. Singh, B., Kushwaha, R.: A PFC based EV battery charger using a bridgeless isolated SEPIC converter. IEEE Trans. Ind. Appl. 56(1), 477-487 (2020) https://doi.org/10.1109/tia.2019.2951510
  33. Sun, X., Shen, Y., Zhu, Y., Guo, X.: Interleaved boost-integrated LLC resonant converter with fixed-frequency PWM control for renewable energy generation applications. IEEE Trans. Power Electron. 30(8), 4312-4326 (2015)
  34. Lee, S.-W., Do, H.-L.: Zero-ripple input-current high-step-up boost-SEPIC DC-DC converter with reduced switch-voltage stress. IEEE Trans. Power Electron. 32(8), 6170-6177 (2017) https://doi.org/10.1109/TPEL.2016.2615303
  35. Hattori, S., Eto, H., Wang, J., and Kurokawa, F.: Performance characteristics of high power density battery charger for plug-in micro EV. Proc. IEEE International Power Electronics and Application Conference and Exposition, pp. 1-6 (2018)
  36. Bai, C., Han, B., Kwon, B.-H., Kim, M.: Highly efficient bidirectional series-resonant DC/DC converter over wide range of battery voltages. IEEE Trans. Power Electron. 35(4), 3636-3650 (2020) https://doi.org/10.1109/tpel.2019.2933408