• Title/Summary/Keyword: Battery charger

Search Result 331, Processing Time 0.024 seconds

Development of Voltage Regulator and Pulse Charger Using Pulse Current for Reuse of the Waste Lead Acid Battery (폐납축전지 재활용을 위한 펄스전류에 의한 전압조정기와 펄스충전기의 개발)

  • Shin, Choon-Shik;An, Young-Joo;Kim, Dong-Wan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.56 no.2
    • /
    • pp.65-73
    • /
    • 2007
  • In this study, the pulse charger and voltage regulator are proposed that can reuse the waste lead acid battery. The first we develop the voltage regulator that can reuse the waste lead battery. And the pulse current is applied to the terminal of the waste lead acid battery. The voltage regulator is available principle of the pulse current which can reduce the sulfate to incipient material such as Pb and PbO2. Therefore the internal resistance of the lead acid battery is decreased, the performance of the lead acid battery is improved and the durability is prolonged. The second we develop the pulse charger using the voltage regulator. The pulse charger uses the switch mode of the forward convert method. The pulse charger maintain the constant voltage in state removing the lead acid battery and when it connected the pulse charger, it is converted the charge mode of the constant current immediately. It continues the rapid charge until the full state of the lead acid battery. After that the pulse charger is converted to the charge mode of constant voltage automatically, and then it continues the normal charge. The experiment results show that the effectiveness of the voltage regulator and pulse charger such as the good performance and the prolonged durability in lead acid battery of the small and large capacity.

The Development of ZVZCS type Battery Charger for High Speed Trail Car with Ni-Cd Battery Charging Algorithm (Ni-Cd전지용 충전 알고리즘을 이용한 고속전철용 ZVZCS형 충전장치개발)

  • 김연준
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.548-551
    • /
    • 2000
  • The battery charger for high speed trail car is very important power source for the purpose of safty and system stability. it provides control power of VVVF, CVCF, DC/DC converter and inverter for traction motor. This paper included power circuit of the ZVZCS type battery charger for high speed trail car and battery included power circuit of the ZVZCS type battery charger for high speed trail car and inverter for traction motor. This paper included power circuit of the ZVZCS type battery charger for high speed trail car an battery charging algorithm. Also the optimum parallel operation of 50Kw battery charger for high speed trail car and charging control method of Ni-Cd battery illustrates validity and effectiveness through the experiments.

  • PDF

Balanced Tapped Inductors for RPPT BCDR(Battery Charger DisCharger) (RPPT 시스템을 위한 새로운 배터리 충.방전기)

  • 이기선
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.472-475
    • /
    • 2000
  • An balanced tapped inductors using RPPT (Regulated Peak Power Tracking) system is proposed. In the series/parallel PPT system battery charger and discharger are operating complementary. So they both can be combined into a single hardware block. Battery charger and dis-charger share same magnetic cores thus can be reduced core weights.

  • PDF

A 3kW Battery Charger with Battery Diagnosis Function Using Online Impedance Spectroscopy (온라인 임피던스 분광법을 이용한 배터리 진단 기능을 가진 3kW 충전기)

  • Doan, Van-Tuan;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2014.11a
    • /
    • pp.68-69
    • /
    • 2014
  • In the battery based applications such as electric vehicle and energy storage system, the performance of the system highly depends on the reliability of the battery. However, it is difficult to obtain the accurate information about the state-of-health (SOH) of battery during its operation. In this paper a 3kw battery charger with battery diagnosis function which can estimate the SOH of the battery by using online impedance spectroscopy technique is introduced. For the charger phase shift full bridge converter with synchronous rectification has been adopted to implement the charge and diagnosis functions. The impedance spectroscopy is performed after the charge to obtain the information about the internal impedance of the battery module, hence the SOH can be estimated online by observing the impedance variation of the battery over time. All the design procedure of the proposed charger is detailed and the feasibility of the system is verified by the experimental results.

  • PDF

A Study on Development of 1.5 [kW] Low-cost Battery Charger for NEVs(Neighborhood Electric Vehicles) (NEV용 1.5[kW]급 저가형 충전기 개발에 관한 연구)

  • Lee, Chan-Song;Jeong, Jin-Beom;Lee, Baek-Haeng;Hur, Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.4
    • /
    • pp.574-579
    • /
    • 2012
  • In this paper, the battery charger developed which is satisfy by the characteristics of the rapid control and reduce the cost of the charger. analog-digital mixed mode controller developed with dedicated IC for PWM control and low-performance micro-processor is using for the operation control of charger. The low-cost NEV charger developed to verify the performance and usability is verified with charging battery experiment by of using developed charger.

The Development of ZVZCS type Battery Charger for High Speed Trail Car with Ni-Cd Battery Charging Algorithm (Ni-Cd전지용 충전 알고리즘을 이용한 고속전철용 ZVZCS형 충전장치개발)

  • 최욱돈;이종필;이재문;김연준
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.5
    • /
    • pp.493-500
    • /
    • 2000
  • The battery charger for high speed trail car is very important power source for the purpose of safety and system stability It provides control power of VVVF, CVCF, DC/DC converter and inverter for traction motor. This paper included power circuit of the ZVZCS type battery charger for high speed trail car and battery charging algorithm. Also the optimum parallel operation of 50kW battery charger for high speed trail car, and charring control method of Ni-Cd battery illustrates validity and effectiveness through the experiments.

  • PDF

An Study for reuse of the waste lead battery using Pulse Charger with mode conversion type (모드 전환형 펄스충전기론 이용한 폐납축전지 재활용에 관한 연구)

  • Shin, Choon-Shik;An, Young-Joo;Kim, Sang-Dong;Shin, Young-Mi;Kim, Jong-Dal;Kim, Dong-Wan
    • Proceedings of the KIEE Conference
    • /
    • 2007.11c
    • /
    • pp.101-107
    • /
    • 2007
  • In this paper, the pulse charger with mode consersion type is proposed that can reuse the waste lead battery. The pulse charger uses the switch mode of the forward convert method. The pulse charger maintain the constant voltage in state removing the lead battery and when it connected the pulse charger, it is converted the charge mode of the constant current immediately. It continues the rapid charge until the full state of the lead battery. After that the pulse charger is converted to the charge mode of constant voltage automatically, and then it continues the normal charge. The experiment results show that the effectiveness of pulse charger such as the good performance and the prolonged durability in lead battery according to capacity states.

  • PDF

Design and Control of the Phase Shift Full Bridge Converter for the On-board Battery Charger of Electric Forklifts

  • Kim, Tae-Hoon;Lee, Seung-Jun;Choi, Woo-Jin
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.113-119
    • /
    • 2012
  • This paper describes the design and control of a phase shift full bridge converter with a current doubler, which can be used for the on-board charger for the lead-acid battery of electric forklifts. Unlike the common resistance load, the battery has a large capacitance element and it absorbs the entire converter output ripple current, thereby shortening the battery life and degrading the system efficiency. In this paper a phase shift full bridge converter with a current doubler has been adopted to decrease the output ripple current and the transformer rating of the charger. The charge controller is designed by using the small signal model of the converter, taking into consideration the internal impedance of the battery. The stability and performance of the battery charger is then verified by constant current (CC) and constant voltage (CV) charge experiments using a lead-acid battery bank for an electric forklift.

Constant Current & Constant Voltage Battery Charger Using Buck Converter (벅 컨버터를 이용한 정전류 정전압 배터리 충전기)

  • Awasthi, Prakash;Kang, Seong-Gu;Kim, Jeong-Hun;Park, Sung-Jun
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.399-400
    • /
    • 2012
  • The proposed battery charger presented in this paper is suitable for Lead-Acid Battery and the dc/dc buck converter topology is applied as a charger circuit. The technique adopted in this charger is constant current & constant voltage dual mode, which is decided by the value of voltage of proposed battery. Automatic mode change function is detected by the percentage value of level of battery charging. CC Mode (Constant Current Mode) is operated when charging level is below 80% of the total charging of Battery voltage and above 80% of battery voltage charging, CV Mode (Constant Voltage Mode) is automatically operated. As the charging level exceeds 120%, it automatically terminates charging. The feedback signal to the PWM generator for charging the battery is controlled by using the current and voltage measurement circuits simultaneously. This technique will degrade the damage of proposed type of battery and improve the power efficiency of charger. Finally, a prototype charger circuit designed for a 12-V 7-Ah lead acid battery is constructed and tested to confirm the theoretical predictions. Satisfactory performance is obtained from simulation and the experimental results.

  • PDF

A Buck-Boost Type Charger with a Switched Capacitor Circuit

  • Wu, Jinn-Chang;Jou, Hurng-Liahng;Tsai, Jie-Hao
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.31-38
    • /
    • 2015
  • In this paper, a buck-boost type battery charger is developed for charging battery set with a lower voltage. This battery charger is configured by a rectifier circuit, an integrated boost/buck power converter and a switched capacitors circuit. A boost power converter and a buck power converter sharing a common power electronic switch are integrated to form the integrated boost/buck power converter. By controlling the common power electronic switch, the battery charger performs a hybrid constant-current/constant-voltage charging method and gets a high input power factor. Accordingly, both the power circuit and the control circuit of the developed battery charger are simplified. The switched capacitors circuit is applied to be the output of the boost converter and the input of the buck converter. The switched capacitors circuit can change its voltage according to the utility voltage so as to reduce the step-up voltage gain of the boost converter when the utility voltage is small. Hence, the power efficiency of a buck-boost type battery charger can be improved. Moreover, the step-down voltage gain of the buck power converter is reduced to increase the controllable range of the duty ratio for the common power electronic switch. A prototype is developed and tested to verify the performance of the proposed battery charger.