DOI QR코드

DOI QR Code

Selective Laser Sintering of Co-Cr Alloy Powders and Sintered Products Properties

  • Dong-Wan Lee (School of Materials Science and Engineering, University of Ulsan) ;
  • Minh-Thuyet Nguyen (School of Materials Science and Engineering, University of Ulsan) ;
  • Jin-Chun Kim (School of Materials Science and Engineering, University of Ulsan)
  • Received : 2023.01.26
  • Accepted : 2023.02.17
  • Published : 2023.02.28

Abstract

Metal-additive manufacturing techniques, such as selective laser sintering (SLS), are increasingly utilized for new biomaterials, such as cobalt-chrome (Co-Cr). In this study, Co-Cr gas-atomized powders are used as charge materials for the SLS process. The aim is to understand the consolidation of Co-Cr alloy powder and characterization of samples sintered using SLS under various conditions. The results clearly suggest that besides the matrix phase, the second phase, which is attributed to pores and oxidation particles, is observed in the sintered specimens. The as-built samples exhibit completely different microstructural features compared with the casting or wrought products reported in the literature. The microstructure reveals melt pools, which represent the characteristics of the scanning direction, in particular, or of the SLS conditions, in general. It also exposes extremely fine grain sizes inside the melt pools, resulting in an enhancement in the hardness of the as-built products. Thus, the hardness values of the samples prepared by SLS under all parameter conditions used in this study are evidently higher than those of the casting products.

Keywords

Acknowledgement

This results was supported by "Regional Innovation Strategy (RIS)" through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (MOE) (2021RIS-003).

References

  1. J. A. Pieniazek, A. Lukaszczyk and R. Zapala: Arch. Metall. Mater., 58 (2013) 1281.
  2. D. J. S. Hyslop, A. M. Abdelkader, A. Cox and D. J. Fray: Acta Mater., 58 (2010) 3124.
  3. S.-H. Lee, E. Takahashi, N. Nomura and A. Chiba: Mater. Trans., 46 (2005) 1790.
  4. N. Vicentea, F.Casari, F. Bucciottic, L. Facchinic and A. Molinaria: Euro PM2011-PM Biomaterials, (2011).
  5. A. L. R. Ledesma, H. F. Lopez and J. A. J. Islas: Metals, 6 (2016) 188.
  6. A. Takaichi, Suyalatu, T. Nakamoto, N. Joko, N. Nomura, Y. Tsutsumi, S. Migita, H. Doi, S. Kurosu, A. Chiba, N. Wakabayashi, Y. Igarashi and T. Hanawa: J. Mech. Behav. Biomed. Mater., 21 (2013) 67.
  7. W. E. Frazier: J. Mater. Eng. Perform., 23 (2014) 1917. https://doi.org/10.1007/s11665-014-0958-z
  8. S. Mellor, L. Hao and D. Zhang: Int. J. Prod. Econ., 149 (2014) 194.
  9. L.-C. Zhang and H. Attar: Adv. Eng. Mater., 18 (2016) 463.
  10. B. Vandenbroucke and J.-P. Kruth: Rapid Prototyping J., 13 (2007) 196.
  11. W. Shifeng, L. Shuai, W. Qingsong, C. Yan, Z. Sheng and S. Yusheng: J. Mater. Process. Technol., 214 (2014) 2660.
  12. R. Casati, J. Lemke and M. Vedani: J. Mater. Sci. Technol., 32 (2016) 738.
  13. C. Li, R. White, X. Y. Fang, M. Weaver and Y. B. Guo: Mater. Sci. Eng. A, 705 (2017) 20.
  14. N. Read,, W. Wang, K. Essa and M. M. Attallah: Mater. Des., 65 (2015) 417.
  15. Y. Kajima, A. Takaichi, T. Nakamoto, T. Kimura, Y. Yogo, M. Ashida, H. Doi, N. Nomura, H. Takahashi, T. Hanawa and N. Wakabayashi: J. Mech. Behav. Biomed. Mater., 59 (2016) 446.
  16. E.Girardin, G. Barucca, P. Mengucci, F. Fiori, E. Bassoli, A. Gatto, L. Iuliano and B. Rutkowski: Mater. Today Proc., 3 ( 2016 ) 889.
  17. J. A. Slotwinski, E. J. Garboczi, P. Stutzman, C. F. Ferraris, S. Watsoon and M. Peltz: J. Res. Natl. Inst. Stand. Technol., 119 (2014) 460.
  18. A. J. Saldivar-Garcia and H. F. Lopez: Metall. Mater. Trans. A, 35 (2004) 2517.
  19. H. R. Kim, S.-H. Jang, Y. K. Kim, J. S. Son, B. K. Min, K.-H. Kim and Y.-T. Kwon: Materials, 9 (2016) 596.
  20. J. V. Giacchi, C. N. Morando, O. Fornaro and H. A. Palacio: Mater. Charact., 62 (2011) 53.