DOI QR코드

DOI QR Code

A NOTE ON WEAK EXCLUDED MIDDLE LAW

  • Chanyoung Sung (Department of Mathematics Education Korea National University of Education)
  • Received : 2023.01.04
  • Accepted : 2023.01.27
  • Published : 2023.02.28

Abstract

Intuitionistic Zermelo-Fraenkel (IZF) set theory is a set theory without the axiom of choice and the law of excluded middle (LEM). The weak excluded middle law (WEM) states that ¬𝜑∨¬¬𝜑 for any formula 𝜑. In IZF we show that LEM is equivalent to WEM plus the condition that any set not equal to the empty set has an element.

Keywords

References

  1. J. L. Bell, Intuitionistic set theory, College Publications, 2014. 
  2. L. E. J. Brouwer, Consciousness, philosophy, and mathematics, Proceedings of the Tenth International Congress of Philosophy (Amsterdam, 1948) Volume 2, North-Holland Publishing Company, Amsterdam, 1949. 
  3. V. A. Jankov, Calculus of the weak law of the excluded middle (in Russian), Rossiiskaya Akademiya Nauk. Izvestiya Seriya Matematicheskaya 32 (1968), no. 5, 1044-1051.  https://doi.org/10.1070/IM1968v002n05ABEH000690
  4. T. Lavicka , T. Moraschini, and J. G. Raftery, The algebraic significance of weak excluded middle laws, Math. Logic Quaterly 68 (2022), no. 1, 79-94.  https://doi.org/10.1002/malq.202100046
  5. A. Sorbi and S. A. Terwijn, Generalizations of the weak law of the excluded middle, Notre Dame J. Formal Logic 56 (2015), no. 2, 321-331. https://doi.org/10.1215/00294527-2864325