DOI QR코드

DOI QR Code

ORTHOGONAL PEXIDER HOM-DERIVATIONS IN BANACH ALGEBRAS

  • Vahid Keshavarz (Department of Mathematics, Shiraz University of Technology) ;
  • Jung Rye Lee (Department of Data Sciences, Daejin University) ;
  • Choonkil Park (Research Institute for Natural Sciences, Hanyang University)
  • Received : 2022.02.21
  • Accepted : 2022.10.13
  • Published : 2023.03.03

Abstract

In the present paper, we introduce a new system of functional equations, known as orthogonal Pexider hom-derivation and Pexider hom-Pexider derivation (briefly, (Pexider) hom-derivation). Using the fixed point method, we investigate the stability of Pexider hom-derivations and (Pexider) hom-derivations on Banach algebras.

Keywords

References

  1. L. Aiemsomboon and W. Sintunavarat, Stability of the generalized logarithmic functional equations arising from fixed point theory, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math., 112 (2018), 229-238. https://doi.org/10.1007/s13398-017-0375-x
  2. J. Alonso and C. Benitez, Carlos orthogonality in normed linear spaces: A survey II. Relations between main orthogonalities, Extracta Math., 4 (1989), 121-131.
  3. J. Alonso and C. Benitez, Orthogonality in normed linear spaces: A survey I. Main properties, Extracta Math., 3 (1988), 1-15.
  4. I. El-Fassi, S. Kabbaj and A. Charifi, Hyperstability of Cauchy-Jensen functional equations, Indag. Math., 27 (2016), 855-867. https://doi.org/10.1016/j.indag.2016.04.001
  5. M. Eshaghi Gordji and S. Abbaszadeh, On the orthogonal pexider derivations in orthogonality Banach algebras, Fixed Point Theory, 17 (2016), 327-340.
  6. J. Gao, On the stability of functional equations in 2-normed spaces, Nonlinear Funct. Anal. Appl., 15 (2010), 635-645.
  7. P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436. https://doi.org/10.1006/jmaa.1994.1211
  8. S. Gudder and D. Strawther, Orthogonally additive and orthogonally increasing functions on vector spaces, Pacific J. Math., 58 (1975), 427-436. https://doi.org/10.2140/pjm.1975.58.427
  9. D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. USA., 27 (1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
  10. S. Jin and Y. Lee, A fixed point approach to the stability of the functional equations realted to an additive and quartic mapping, Nonlinear Funct. Anal. Appl., 25 (2020), 249-259. https://doi.org/10.22771/NFAA.2020.25.02.04
  11. K. Jun, D. Shin and B. Kim, On the Hyers-Ulam-Rassias stability of the Pexider equation, J. Math. Anal. Appl., 239 (1999), 20-29. https://doi.org/10.1006/jmaa.1999.6521
  12. S. Jung, D. Popa and M.Th. Rassias, On the stability of the linear functional equation in a single variable on complete metric spaces, J. Global Optim., 59 (2014), 13-16. https://doi.org/10.1007/s10898-013-0083-9
  13. Z. Kominek, On pexiderized Jensen-Hossz'u functional equation on the unit interval, J. Math. Anal. Appl., 409 (2014), 722-728. https://doi.org/10.1016/j.jmaa.2013.07.001
  14. Y. Lee and K. Jun, A generalization of the Hyers-Ulam-Rassias stability of Pexider equation, J. Math. Anal. Appl., 246 (2000), 627-638. https://doi.org/10.1006/jmaa.2000.6832
  15. Y. Lee and S. Jung, Stability of some cubic-additive functional equations, Nonlinear Funct. Anal. Appl., 25 (2020), 35-54.
  16. Y. Lee, S. Jung and M.Th. Rassias, Uniqueness theorems on functional inequalities concerning cubic-quadratic-additive equation, J. Math. Inequal., 12 (2018), 43-61. https://doi.org/10.7153/jmi-2018-12-04
  17. Y. Lee and G. Kim, Generalized Hyers-Ulam stability of the pexider functional equation, Math. 7 (3) (2019), Article No. 280.
  18. B. Margolis and J. Diaz, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Am. Math. Soc., 74 (1968), 305-309. https://doi.org/10.1090/S0002-9904-1968-11933-0
  19. M.R. Moghadam, Th. M. Rassias, V. Keshavarz, C. Park and Y. Park, Jordan homo-morphisms in C*-ternary agebras and JB*-triples, J. Comput. Anal. Appl., 24 (2018), 416-424.
  20. A. Najati and S. Ostadbashi, Approximate generalized Jordan derivations on Banach modules, Nonlinear Funct. Anal. Appl., 15 (2010), 31-43.
  21. C. Park, Additive ρ-functional inequalities in non-Archimedean normed spaces, J. Math. Inequal., 9 (2015), 397-407. https://doi.org/10.7153/jmi-09-33
  22. C. Park, Additive sfunctional inequalities and partial multipliers in Banach algebras, J. Math. Ineq., 13 (2019), 867-877. https://doi.org/10.7153/jmi-2019-13-60
  23. C. Park, J. Cui and M. Eshaghi Gordji, Orthogonality and quintic functional equations, Acta Math. Sin. (Engl. Ser.) 29 (2013), 1381-1390. https://doi.org/10.1007/s10114-013-1061-3
  24. C. Park, J. Lee and X. Zhang, Additive s-functional inequality and hom-derivations in Banach algebras, J. Fixed Point Theory Appl. 21 (2019), Article No. 18.
  25. J. Ratz, On orthogonally additive mappings, Aequationes Math., 28 (1985), 35-49. https://doi.org/10.1007/BF02189390
  26. J.M. Rassias, Solution of a problem of Ulam, J. Approx. Theory, 57 (1989), 268-273. https://doi.org/10.1016/0021-9045(89)90041-5
  27. Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
  28. S.M. Ulam, A Collection of Mathematical Problems, Interscience Publ., New York, 1960.