References
- L. Aiemsomboon and W. Sintunavarat, Stability of the generalized logarithmic functional equations arising from fixed point theory, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math., 112 (2018), 229-238. https://doi.org/10.1007/s13398-017-0375-x
- J. Alonso and C. Benitez, Carlos orthogonality in normed linear spaces: A survey II. Relations between main orthogonalities, Extracta Math., 4 (1989), 121-131.
- J. Alonso and C. Benitez, Orthogonality in normed linear spaces: A survey I. Main properties, Extracta Math., 3 (1988), 1-15.
- I. El-Fassi, S. Kabbaj and A. Charifi, Hyperstability of Cauchy-Jensen functional equations, Indag. Math., 27 (2016), 855-867. https://doi.org/10.1016/j.indag.2016.04.001
- M. Eshaghi Gordji and S. Abbaszadeh, On the orthogonal pexider derivations in orthogonality Banach algebras, Fixed Point Theory, 17 (2016), 327-340.
- J. Gao, On the stability of functional equations in 2-normed spaces, Nonlinear Funct. Anal. Appl., 15 (2010), 635-645.
- P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436. https://doi.org/10.1006/jmaa.1994.1211
- S. Gudder and D. Strawther, Orthogonally additive and orthogonally increasing functions on vector spaces, Pacific J. Math., 58 (1975), 427-436. https://doi.org/10.2140/pjm.1975.58.427
- D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. USA., 27 (1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
- S. Jin and Y. Lee, A fixed point approach to the stability of the functional equations realted to an additive and quartic mapping, Nonlinear Funct. Anal. Appl., 25 (2020), 249-259. https://doi.org/10.22771/NFAA.2020.25.02.04
- K. Jun, D. Shin and B. Kim, On the Hyers-Ulam-Rassias stability of the Pexider equation, J. Math. Anal. Appl., 239 (1999), 20-29. https://doi.org/10.1006/jmaa.1999.6521
- S. Jung, D. Popa and M.Th. Rassias, On the stability of the linear functional equation in a single variable on complete metric spaces, J. Global Optim., 59 (2014), 13-16. https://doi.org/10.1007/s10898-013-0083-9
- Z. Kominek, On pexiderized Jensen-Hossz'u functional equation on the unit interval, J. Math. Anal. Appl., 409 (2014), 722-728. https://doi.org/10.1016/j.jmaa.2013.07.001
- Y. Lee and K. Jun, A generalization of the Hyers-Ulam-Rassias stability of Pexider equation, J. Math. Anal. Appl., 246 (2000), 627-638. https://doi.org/10.1006/jmaa.2000.6832
- Y. Lee and S. Jung, Stability of some cubic-additive functional equations, Nonlinear Funct. Anal. Appl., 25 (2020), 35-54.
- Y. Lee, S. Jung and M.Th. Rassias, Uniqueness theorems on functional inequalities concerning cubic-quadratic-additive equation, J. Math. Inequal., 12 (2018), 43-61. https://doi.org/10.7153/jmi-2018-12-04
- Y. Lee and G. Kim, Generalized Hyers-Ulam stability of the pexider functional equation, Math. 7 (3) (2019), Article No. 280.
- B. Margolis and J. Diaz, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Am. Math. Soc., 74 (1968), 305-309. https://doi.org/10.1090/S0002-9904-1968-11933-0
- M.R. Moghadam, Th. M. Rassias, V. Keshavarz, C. Park and Y. Park, Jordan homo-morphisms in C*-ternary agebras and JB*-triples, J. Comput. Anal. Appl., 24 (2018), 416-424.
- A. Najati and S. Ostadbashi, Approximate generalized Jordan derivations on Banach modules, Nonlinear Funct. Anal. Appl., 15 (2010), 31-43.
- C. Park, Additive ρ-functional inequalities in non-Archimedean normed spaces, J. Math. Inequal., 9 (2015), 397-407. https://doi.org/10.7153/jmi-09-33
- C. Park, Additive sfunctional inequalities and partial multipliers in Banach algebras, J. Math. Ineq., 13 (2019), 867-877. https://doi.org/10.7153/jmi-2019-13-60
- C. Park, J. Cui and M. Eshaghi Gordji, Orthogonality and quintic functional equations, Acta Math. Sin. (Engl. Ser.) 29 (2013), 1381-1390. https://doi.org/10.1007/s10114-013-1061-3
- C. Park, J. Lee and X. Zhang, Additive s-functional inequality and hom-derivations in Banach algebras, J. Fixed Point Theory Appl. 21 (2019), Article No. 18.
- J. Ratz, On orthogonally additive mappings, Aequationes Math., 28 (1985), 35-49. https://doi.org/10.1007/BF02189390
- J.M. Rassias, Solution of a problem of Ulam, J. Approx. Theory, 57 (1989), 268-273. https://doi.org/10.1016/0021-9045(89)90041-5
- Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
- S.M. Ulam, A Collection of Mathematical Problems, Interscience Publ., New York, 1960.