DOI QR코드

DOI QR Code

Experimental study on vibration serviceability of cold-formed thin-walled steel floor

  • Bin Chen (Chengdu Architectural Design & Research Institute Co., LTD.) ;
  • Liang Cao (College of Civil Engineering, Hunan University) ;
  • Faming Lu (Chengdu Architectural Design & Research Institute Co., LTD.) ;
  • Y. Frank Chen (Department of Civil Engineering, The Pennsylvania State University)
  • Received : 2022.11.17
  • Accepted : 2023.01.19
  • Published : 2023.02.25

Abstract

In this study, on-site testing was carried out to investigate the vibration performance of a cold-formed thin-walled steel floor system. Ambient vibration, walking excitation (single and double persons), and impulsive excitation (heel-drop and jumping) were considered to capture the primary vibration parameters (natural frequencies, damping ratios, and mode shapes) and vertical acceleration response. Meanwhile, to discuss the influence of cement fiberboard on structural vibration, the primary vibration parameters were compared between the systems with and without the installation of cement fiberboard. Based on the experimental analysis, the cold-formed thin-walled steel floor possesses high frequency (> 10 Hz) and damping (> 2%); the installed cement fiberboard mainly increases the mass of floor system without effectively increasing the floor stiffness and may reduce the effects of primary vibration parameters on acceleration response; and the human-structure interaction should be considered when analyzing the vibration serviceability. The comparison of the experimental results with those in the AISC Design Guide indicates that the cold-formed thin-walled steel floor exhibits acceptable vibration serviceability. A crest factor 𝛽rp (ratio of peak to root-mean-square accelerations) is proposed to determine the root-mean-square acceleration for convenience.

Keywords

Acknowledgement

The authors are grateful to the supports provided by the National Natural Science Foundation of China (Grant No. 52278175, 51908084), the Fundamental Research Funds for the Central Universities (Grant No. 531118010784), and Technical Research and Innovation Project of Chengdu Architectural Design & Research Institute Co., LTD.

References

  1. Cao, L., Liu, J.P. and Chen, Y. F. (2018), "Vibration performance of arch prestressed concrete truss girder under impulse excitation", Eng. Struct., 2018, 165, 386-395. https://doi.org/10.1016/j.engstruct.2018.03.050.
  2. Cao, L., Tan, Y.C. and Li, J. (2021), "Experimental studies on vibration serviceability of composite steel-bar truss slab with steel girder under human activities", Steel Compos. Struct., 40(5), 663-678. https://doi.org/10.12989/scs.2021.40.5.663.
  3. Charlier, M., Gamba, A., Dai, X., Welch, S., Vassart, O. and Franssen, J.M. (2021), "Modelling the influence of steel structure compartment geometry on travelling fires", P. I. Civil Eng.-Str. B., 174 (9), 739-748. https://doi.org/10.1680/jstbu.20.00073.
  4. Chu, Y.P., Hou, H.J. and Yao, Y. (2020), "Experimental study on shear performance of composite cold-formed ultra-thin-walled steel shear wall", J. Constr. Steel Res., 172, 106168. https://doi.org/10.1016/j.jcsr.2020.106168.
  5. Davis, B., Liu, D. and Murray, T.M. (2014), "Simplified experimental evaluation of floors subject to walking induced vibration", J. Perform. Constr. Fac., 28(5), 04014023.
  6. Dey, P., Narasimhan, S. and Walbridge, S. (2021), "Reliability-based assessment and calibration of standards for the lateral vibration of pedestrian bridges", Eng. Struct., 239, 112271. https://doi.org/10.1016/j.engstruct.2021.112271.
  7. Dragasius, E., Eidukynas, D., Jurenas, V., Mazeika, D., Galdikas, M., Mystkowski, A. and Mystkowska, J. (2021), "Piezoelectric transducer-based diagnostic system for composite structure health monitoring", Sensors, 21(1), 253. https://doi.org/10.3390/s21010253.
  8. Feng, M., Wang, Y.C. and Davies, J.M. (2003), "Axial strength of cold-formed thin-walled steel channels under non-uniform temperatures in fire", Fire Safety J., 38(8), 679-707. https://doi.org/10.1016/S0379-7112(03)00070-5.
  9. GB/T 4883-2008. (2008), Statistical Interpretation of Data-Detection and Treatment of Outliers in the Normal Sample. Beijing, China.
  10. Gong, M., Li, Y.S., Shen, R.L. and Wei, X.X. (2021), "Glass suspension footbridge: human-induced vibration, serviceability evaluation, and vibration mitigation", J. Bridge Eng., 26(11), 05021014. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001788.
  11. Gorski, P., Tatara, M. and Stankiewicz, B. (2021), "Vibration serviceability of all-GFRP cable-stayed footbridge under various service excitations", Measurement, 183, 109822. https://doi.org/10.1016/j.measurement.2021.109822.
  12. Guan, Y., Zhou, X.H., Yao, X.M. and Shi, Y. (2020), "Seismic performance of prefabricated sheathed cold-formed thin-walled steel buildings: Shake table test and numerical analyses", J. Constr. Steel Res., 167, 105837. https://doi.org/10.1016/j.jcsr.2019.105837.
  13. Guo, Y., Lian, M., Zhang, H. and Cheng, Q.Q. (2022), "Cyclic loading behavior of high-strength steel framed-tube structures with replaceable shear links constructed using Q355 structural steel", Steel Compos. Struct., 42(6), 827-841. https://doi.org/10.12989/scs.2022.42.6.827.
  14. Hosseinpour, M., Zeynalian, M., Ataei, A. and Daei, M. (2021), "Push-out tests on bolted shear connectors in composite cold-formed steel beams", 164, 107831. https://doi.org/10.1016/j.tws.2021.107831.
  15. Jia, D.F., Zhang, W.P., Wang, Y.H. and Liu, Y.P. (2021), "A new approach for cylindrical steel structure deformation monitoring by dense point clouds", Remote Sens., 13(12), 2263. https://doi.org/10.3390/rs13122263.
  16. Khaliq, W., and Moghis, A. (2017), "Shear capacity of cold-formed light-gauge steel framed shear-wall panels with fiber cement board sheathing", Int. J. Steel Struct., 17(4), 1404-1414. https://doi.org/10.1007/s13296-017-1211-z.
  17. Kumar, W., Sharma, U.K. and Shome, M. (2021), "Mechanical properties of conventional structural steel and fire-resistant steel at elevated temperatures", J. Constr. Steel Res., 181, 106615. https://doi.org/10.1016/j.jcsr.2021.106615.
  18. Laim, L.C., Rodrigues, J.P. and da Silva, L.S. (2014), "Experimental analysis on cold-formed steel beams subjected to fire", Thin Wall. Struct., 74, 104-117. https://doi.org/10.1016/j.tws.2013.09.006.
  19. Liu, J.P., Cao, L. and Chen, Y.F. (2020), "Theoretical Analysis of human-structure interaction on steel-concrete composite floors", J. Eng. Mech., 146(4), 04020007. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001740.
  20. Liu, Q.H., Liu, X.W., Zhang, C.Z. and Xin, F.X. (2021), "A novel multiscale porous composite structure for sound absorption enhancement", Compos. Struct., 276, 114456. https://doi.org/10.1016/j.compstruct.2021.114456.
  21. Lv, Q.F., Lu, Y.J. and Liu, Y. (2021), "Vibration serviceability of suspended floor: Full-scale experimental study and assessment", Structures, 34, 1651-1664. https://doi.org/10.1016/j.istruc.2021.08.120.
  22. Murray, T.M., Allen, D.E., Ungar, E.E. and Davis, D.B. (2016), Vibrations of Steel-Framed Structural Systems Due to Human Activity, American Institute of Steel Construction, Inc., Chicago, USA, 2016.
  23. Pourabdollah, O., Farahbod, F. and Rofooei, F.R. (2017), "The seismic performance of K-braced cold-formed steel shear panels with improved connections", J. Constr. Steel Res., 135, 56-68. https://doi.org/10.1016/j.jcsr.2017.04.008.
  24. Qiao, W.T., Huang, Z.Y., Yan, X.S. Wang, D. and Meng, L.J. (2022), "Research on flexural bearing capacity of cold-formed thin-walled steel and reinforced concrete sandwich composite slabs", Steel Compos. Struct., 45(2), 219-230. https://doi.org/10.12989/scs.2022.45.2.219.
  25. Qiao, W.T., Wang, Y.H., Zhu, R.J., Li, R.F. and Zhao, M.S. (2021), "Experimental study on the axial bearing capacity of built-up cold-formed thin-walled steel multi-limb-section columns", Steel Compos. Struct., 40(6), 781-794. https://doi.org/10.12989/scs.2021.40.6.781.
  26. Racic, V. and Pavic, A. (2010), "Mathematical model to generate near-periodic human jumping force signals", Mech. Syst. Signal Pr., 24(1), 138-152. https://doi.org/10.1016/j.ymssp.2009.07.001.
  27. Sa, M.F., Guerreiro, L., Gomes, A.M., Correia, J.R. and Silvestre, N. (2017), "Dynamic behaviour of a GFRP-steel hybrid pedestrian bridge in serviceability conditions. Part 1: Experimental study", Thin Wall. Struct., 117, 332-342. https://doi.org/10.1016/j.tws.2017.05.013.
  28. Sadhu, A., Dunphy, K. and Zerpa, C. (2021), "Investigation of vibration data-based human load monitoring system", Struct. Health Monit., 20(3), 791-803. https://doi.org/10.1177/1475921719836254.
  29. Smith, A.L., Hicks, S.J. and Devine, P.J. (2009), Design of Floors for Vibration: A New Approach, Berkshire, The Steel Construction Institute.
  30. Soyoz, S., Hanbay, S., Bagirgan, B. and Ergun, O. (2020), "Long-term vibration-based monitoring and seismic performance assessment of a wind turbine", J. Civ. Struct. Health., 11(1), 117-128. https://doi.org/10.1007/s13349-020-00442-z.
  31. Van Nimmen, K., Van den Broeck, P., Verbeke, P., Schauvliege, C., Mallie, M., Ney, L. and De Roeck, G. (2017), "Numerical and experimental analysis of the vibration serviceability of the Bears' Cage footbridge", Struct. Infrastruct. E., 13(3), 390-400. https://doi.org/ 10.1080/15732479.2016.1160133.
  32. Wang, X.Q., Lu, J., Lu, S.W., Li, B., Zhang, L., Ma, C.K., Ma, K.M., Lin, L.Y., Jiang, X.W. and Yang, B. (2021), "Health monitoring of repaired composite structure using MXene sensor", Compos. Commun., 27, 100850. https://doi.org/10.1016/j.coco.2021.100850.
  33. Yang, C., Yang, D.C., Huang, C.P., Huang, Z.X., Ouyang, L.Z., Onyebueke, L. and Li, L. (2022), "Effect of silicone rubber-sleeve mounted on shear studs on shear stiffness of steel-concrete composite structures", Steel Compos. Struct., 44(5), 741-752. https://doi.org/10.12989/scs.2022.44.5.741.
  34. Yun, D.Y., Kim, D., Kim, M., Bae, S.G., Choi, J.W., Shim, H.B., Hong, T., Lee, D.E. and Park, H.S. (2021), "Field measurements for identification of modal parameters for high-rise buildings under construction or in use", Automat. Constr., 121, 103446. https://doi.org/10.1016/j.autcon.2020.103446.
  35. Zhou, X.H., Cao, L., Chen, Y.F., Liu, J.P. and Li, J. (2016), "Experimental and analytical studies on the vibration serviceability of pre-stressed cable RC truss floor systems", J. Sound Vib., 361, 130-147. https://doi.org/10.1016/j.jsv.2015.10.001.
  36. Zhou, X.H., Liu, J.P., Cao, L. and Li, J. (2017), "Vibration serviceability of pre-stressed concrete floor system under human activity", Struct. Infrastruct. E., 13(8), 967-977. https://doi.org/10.1080/15732479.2016.1229796.
  37. Zhu, Q.K., Liu, K.F., Liu, L.L., Du, Y.F. and Zivanovic, S. (2020), "Experimental and numerical analysis on serviceability of cantilevered floor based on human-structure interaction", J. Constr. Steel Res., 173, 106184. https://doi.org/10.1016/j.jcsr.2020.106184.