DOI QR코드

DOI QR Code

Fatigue wind load spectrum construction based on integration of turbulent wind model and measured data for long-span metal roof

  • Liman Yang (School of Automation Science and Electrical Engineering, Beihang University) ;
  • Cong Ye (School of Automation Science and Electrical Engineering, Beihang University) ;
  • Xu Yang (School of Automation Science and Electrical Engineering, Beihang University) ;
  • Xueyao Yang (School of Automation Science and Electrical Engineering, Beihang University) ;
  • Jian-ge Kou (School of Automation Science and Electrical Engineering, Beihang University)
  • Received : 2021.05.16
  • Accepted : 2023.02.14
  • Published : 2023.02.25

Abstract

Aiming at the problem that fatigue characteristics of metal roof rely on local physical tests and lacks the cyclic load sequence matching with regional climate, this paper proposed a method of constructing the fatigue load spectrum based on integration of wind load model, measured data of long-span metal roof and climate statistical data. According to the turbulence characteristics of wind, the wind load model is established from the aspects of turbulence intensity, power spectral density and wind pressure coefficient. Considering the influence of roof configuration on wind pressure distribution, the parameters are modified through fusing the measured data with least squares method to approximate the actual wind pressure load of the roof system. Furthermore, with regards to the wind climate characteristics of building location, Weibull model is adopted to analyze the regional meteorological data to obtain the probability density distribution of wind velocity used for calculating wind load, so as to establish the cyclic wind load sequence with the attributes of regional climate and building configuration. Finally, taking a workshop's metal roof as an example, the wind load spectrum is constructed according to this method, and the fatigue simulation and residual life prediction are implemented based on the experimental data. The forecasting result is lightly higher than the design standards, consistent with general principles of its conservative safety design scale, which shows that the presented method is validated for the fatigue characteristics study and health assessment of metal roof.

Keywords

Acknowledgement

This article is financially supported by National Natural Science Foundation of China and Shanxi Coal-based Low Carbon Joint Fund with the project No. U1910211.

References

  1. Akiyama, Mitsuyoshi, Frangopol, Dan, M., Takenaka and Koshin. (2017). "Reliability-based durability design and service life assessment of reinforced concrete deck slab of jetty structures", Struct. Infra. Eng., 13(4/6), 468-477. https://doi.org/10.1080/15732479.2016.1164725
  2. Alrawashdeh, H. and Stathopoulos, T. (2015), "Wind pressures on large roofs of low buildings and wind codes and standards - ScienceDirect" J. Wind Eng. Indust. Aero., 147, 212-225. https://doi.org/10.1016/j.jweia.2015.09.014.
  3. Amir, N., Mohammad, M., Manuel, M. and Ioannis, Z. (2022), "Codification study of wind-induced loads on canopies attached to mid-rise buildings", J. Wind Eng. Indust. Aero., 227, https://doi.org/10.1016/j.jweia.2022.105050.
  4. Blocken, B. (2014), 50 years of Computational Wind Engineering: Past, present and future. J. Wind Eng. Indust. Aero., 129, 69-102. https://doi.org/10.1016/j.jweia.2014.03.008.
  5. Chen, J., Gao, C., Zhang, N.L., Yong-Ling, L.U., Cheng-Bo, H.U., Liu, Z.Q., Fang, C.H., Zhang, W. and Jing, L.I. (2019), "Measured Wind Speed Distribution Characteristics and Evaluation of Return Period Model", Sci. Tech. Eng..
  6. Chen, Z., Liu, T., Yu, M., Chen, G., Chen, M. and Guo, Z. (2020), "Experimental and numerical research on wind characteristics affected by actual mountain ridges and windbreaks: a case study of the Lanzhou-Xinjiang high-speed railway.", Eng. Appl. Comput. Fluid Mech., 14(1), 1385-1403. https://doi.org/10.1080/19942060.2020.1831963.
  7. Chu, Y.P., Sun, X.H., Li, M. and Huang, H.J. (2022). "Wind pressure on a large-span Hyperbolic-paraboloid roof subjected to a simulated downburst", Eng. Mech., 39(3), 182-192.
  8. Davenport A. (1983), "On the assessment of the reliability of wind loading on low buildings", J. Wind Eng. Indust. Aero., 11(1-3), 21-37. https://doi.org/10.1016/0167-6105(83)90088-0.
  9. Howell. P, Kozyre. G. and Ockendon. J.R. (2009), Applied Solid Mechanics [M], Cambridge University Press, New York.
  10. Jie, Shi, Zhaohao, Ding, Wei-Jen, Lee, Yongping, Yang, Yongqian, and Liu. (2014), "Hybrid Forecasting Model for Very-Short Term Wind Power Forecasting Based on Grey Relational Analysis and Wind Speed Distribution Features", Smart Grid Transactions on.
  11. Kathekeyan, M. and Mahendran, M. (2017), 07.05: "Fatigue life assessment of cold-formed steel roof battens", Ce/papers, 1(2-3), 1523-1532. https://doi.org/10.1002/cepa.195
  12. Lin, C., Ou, J., Ren, N. and Xiao, Y. (2014), "Model and parameters of fatigue wind speed spectrums in need of structural life-cycle design", J. Natural Disasters, 23(2), 77-84.
  13. Lovisa, A.C., Henderson, D.J., Ginger, J.D. and Walker, G. (2016), "Characterising fatigue macrocrack initiation in profiled steel roof cladding", Eng. Struct., 125, 364-373. https://doi.org/10.1016/j.engstruct.2016.07.020.
  14. Mikheevskiy, S., Glinka, G. and Cordes, T. (2015). "Total Life Approach for Fatigue Life Estimation of Welded Structures", Procedia Eng., 101, 177-184. https://doi.org/10.1016/j.proeng.2015.02.023
  15. Mou, B., He, B.J., Zhao, D.X., & Chau, K.-w. (2017), "Numerical simulation of the effects of building dimensional variation on wind pressure distribution", Eng. Appl. Comput. Fluid Mech., 11(1), 293-309. https://doi.org/10.1080/19942060.2017.1281845.
  16. Myuran, K. and Mahendran, M. (2017), "New test and design methods for steel roof battens subject to fatigue pull-through failures", Thin Wall. Struct., 119, 558-571. https://doi.org/10.1016/j.tws.2017.07.007.
  17. Peng, Y., Zhao, W. and Ai, X. (2019), "Field measurement and CFD simulation of wind pressures on rectangular attic", Wind Struct. Int. J., 29(6), 487-504. https://doi.org/10.12989/was.2019.29.6.471.
  18. Pishgar-Komleh, S.H., Keyhani, A. and Sefeedpari, P. (2015), "Wind speed and power density analysis based on Weibull and Rayleigh distributions", (a case study: Firouzkooh county of Iran). Renewable and Sustainable Energy Reviews, 42, 313-322. https://doi.org/10.1016/j.rser.2014.10.028.
  19. Qiu, B., Lei, H.G., Shen, Y. and Ji, X.Z. (2022), "Fatigue load spectrum research of the grid structure under suspension crane loading", Indust. Construct., 1-14. http:///11.2068.TU.20220518.2144.004.html.
  20. Shen, D.K., Yang, L.M., Fu, C.Y. and Shi, Y. (2018), "Study on wind pressure of TTU model by numerical simulation", Manufact. Automat., 40(3): 56-60.
  21. Smith, K.N., Watson, P. and Topper, T.H. (1970), "A stress strain function for the fatigue of metals", J. Mater., 15(4), 767-778.
  22. Su, X., Ma, Y., Wang, L., Guo, Z. and Zhang, J. (2022), "Fatigue life prediction for prestressed concrete beams under corrosion deterioration process", Struct., 43, 1704-1715. https://doi.org/10.1016/j.istruc.2022.07.043.
  23. Wang, Z., Yang, D.Y., Frangopol, D.M. and Jin, W. (2019), "Inclusion of environmental impacts in life-cycle cost analysis of bridge structures", Sustain. Resilient Infrastruct., 1-16. https://doi.org/10.1080/23789689.2018.1542212.
  24. Xu, C., J., Lei H., G., & Wang, G., Q. (2022). Fatigue life and fatigue reliability assessment for long-span spatial structure based on long-term health monitoring data. Struct., 47, 586-594. https://doi.org/10.1016/j.istruc.2022.11.104.
  25. Xu, Y.L. (1995). "Model and full-scale comparison of fatigue-related characteristics of wind pressures on the Texas Tech Building", J. Wind Eng. Indust. Aero., 58(3), 147-173. https://doi.org/10.1016/0167-6105(95)00012-7
  26. Yang, Y., Xie, Z. and Shi, B. (2017), "Influence of roof members on wind load characteristics of traditional low-rise residence buildings", Jianzhu Jiegou Xuebao/J. Build. Struct., 38(2), 143-150. https://doi.org/10.1016/j.jweia.2012.01.004.
  27. Yuan, P., Zhang, S. and Xue, Z. (2007), "Experimental investigation on characteristics of wind loads on large arc roof", Build. Struct.,
  28. Yue, L., Qiang, X. and Zheng, P. (2022), "Investigation on the failure type of tower segments under equivalent static wind loads", Wind Struct., 34(2), 161-171. https://doi.org/10.12989/was.2022.34.2.161.
  29. Zhan, Z., Hu, W., Zhang, M. and Meng, Q. (2015), "The fatigue life prediction for structure with surface scratch considering cutting residual stress, initial plasticity damage and fatigue damage", Int. J. Fatigue, 74(5), 173-182. https://doi.org/10.1016/j.ijfatigue.2015.01.011
  30. Zou, X.H., Gou, L.L., Fu, L., Liu, L.T., Yuan, H.M. and Ling, L. (2022), "Research on Fatigue Life of All-Terrain Vehicle Control Arm Based on Measured Load Spectrum", J. Ordnance Equipment Eng., 1-9. http://50.1213.TJ.20220616.1914.010.html. https://doi.org/10.html