References
- D. B. Rawat and S. R. Reddy, "Software Defined Networking Architecture, Security and Energy Efficiency: A Survey," IEEE Commun. Surv. Tutorials, vol. 19, no. 1, pp. 325-346, 2017. https://doi.org/10.1109/COMST.2016.2618874
- S. A. Shah, J. Faiz, M. Farooq, A. Shafi, and S. A. Mehdi, "An architectural evaluation of SDN controllers," IEEE Int. Conf. Commun., vol. 1, pp. 3504-3508, 2013.
- P. Amaral, J. Dinis, P. Pinto, L. Bernardo, J. Tavares, and H. S. Mamede, "Machine Learning in Software Defined Networks: Data collection and traffic classification," 2016 IEEE 24th Int. Conf. Netw. Protoc., no. NetworkML, pp. 1-5, 2016.
- M. C. Dacier, H. Konig, R. Cwalinski, F. Kargl, and S. Dietrich, "Security Challenges and Opportunities of Software-Defined Networking," IEEE Secur. Priv., vol. 15, no. 2, pp. 96-100, 2017. https://doi.org/10.1109/MSP.2017.46
- C. Applications, " Generating realistic intrusion detection system dataset based on fuzzy qualitative modeling ☆," vol. 87, no. November 2016, pp. 185-192, 2017. https://doi.org/10.1016/j.jnca.2017.03.018
- N. Moustafa, J. Slay, and I. Technology, "Intrusion Detection systems," 2015.
- M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, "A Detailed Analysis of the KDD CUP 99 Data Set," no. Cisda, pp. 1-6, 2009.
- S. Scott-Hayward, G. O'Callaghan, and S. Sezer, "SDN security: A survey," SDN4FNS 2013 - 2013 Work. Softw. Defin. Networks Futur. Networks Serv., 2013.
- S. Jantila and K. Chaipah, "A Security Analysis of a Hybrid Mechanism to Defend DDoS Attacks in SDN," Procedia Comput. Sci., vol. 86, no. March, pp. 437-440, 2016. https://doi.org/10.1016/j.procs.2016.05.072
- A. J. Pinheiro, E. B. Gondim, and D. R. Campelo, "An efficient architecture for dynamic middlebox policy enforcement in SDN networks," Comput. Networks, vol. 122, pp. 153-162, 2017. https://doi.org/10.1016/j.comnet.2017.04.055
- K. Afdel, "DoS Detection Method based on Artificial Neural Networks," no. May, 2017.
- M. AL-Hawawreh, N. Moustafa, and E. Sitnikova, "Identification of malicious activities in industrial internet of things based on deep learning models," J. Inf. Secur. Appl., vol. 41, pp. 1-11,
- M. H. Kamarudin, C. Maple, T. Watson, and N. S. Safa, "A LogitBoost-Based Algorithm for Detecting Known and Unknown Web Attacks," IEEE Access, vol. 5, pp. 26190-26200, 2017. https://doi.org/10.1109/ACCESS.2017.2766844
- M. Belouch, S. El Hadaj, and M. Idlianmiad, "Performance evaluation of intrusion detection based on machine learning using apache spark," Procedia Comput. Sci., vol. 127, pp. 1-6,
- T. Janarthanan and S. Zargari, "Feature selection in UNSW-NB15 and KDDCUP'99 datasets," IEEE Int. Symp. Ind. Electron., pp. 1881-1886, 2017.
- S. K. Fayaz, Y. Tobioka, V. Sekar, M. Bailey, and M. Bailey, "Bohatei : Flexible and Elastic DDoS Defense This paper is included in the Proceedings of the," 2015.
- N. Anand, S. Babu, and B. S. Manoj, "On detecting compromised controller in software defined networks," Comput. Networks, vol. 137, pp. 107-118, 2018. https://doi.org/10.1016/j.comnet.2018.03.021
- N. Meti, D. G. Narayan, and V. P. Baligar, "Detection of Distributed Denial of Service Attacks using Machine Learning Algorithms in Software Defined Networks," pp. 1366-1371, 2017.
- X. You, Y. Feng, and K. Sakurai, "Packet In message based DDoS attack detection in SDN network using OpenFlow," 2017.
- N. Moustafa and J. Slay, "The evaluation of Network Anomaly Detection Systems: Statistical analysis of the UNSW-NB15 data set and the comparison with the KDD99 data set," Inf. Secur. J., vol. 25, no. 1-3, pp. 18-31, 2016. https://doi.org/10.1080/19393555.2015.1125974
- N. Moustafa and J. Slay, "UNSW-NB15: A comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set)," 2015 Mil. Commun. Inf. Syst. Conf. MilCIS 2015 - Proc., 2015.
- RYU SDN Project Team, "RYU SDN Framework," 2016. [Online]. Available: https://osrg.github.io/ryubook/en/Ryubook.pdf. [Accessed: 27-Dec-2018].
- Mini net team, "Mininet: An Instant Virtual Network on your Laptop (or other PC) - Mininet," 2018. [Online]. Available: http://mininet.org/. [Accessed: 27-Dec-2018].
- Esnet and Lawrence Berkeley National Laboratory, "iPerf - The TCP, UDP and SCTP network bandwidth measurement tool," Iperf.Fr, 2016. [Online]. Available: https://iperf.fr/. [Accessed: 27-Dec-2018].
- "Scapy." [Online]. Available: https://scapy.net/. [Accessed: 27-Dec-2018].
- M. G. Luis, "TCPDUMP/LIBPCAP public repository," Online Doc., 2009.
- Microsoft Corporation, "Use the Analysis ToolPak to perform complex data analysis," Microsoft Office Support, 2018. [Online]. Available: https://support.office.com/en-us/article/Use-theAnalysis-ToolPak-to-perform-complex-data-analysis6C67CCF0-F4A9-487C-8DEC-BDB5A2CEFAB6. [Accessed: 27-Dec-2018].
- Mathworka, "Machine Learning with MATLAB - MATLAB & Simulink," 2016. [Online]. Available: https://www.mathworks.com/campaigns/products/offer/machine-learning-withmatlab.html?s_tid=hp_offer_ml_ebok. [Accessed: 27-Dec-2018].