DOI QR코드

DOI QR Code

Residual capacity assessment of in-service concrete box-girder bridges considering traffic growth and structural deterioration

  • Yuanyuan Liu (School of Civil Engineering, Guangzhou University) ;
  • Junyong Zhou (School of Civil Engineering, Guangzhou University) ;
  • Jianxu Su (Earthquake Engineering Research & Test Center, Guangzhou University) ;
  • Junping Zhang (Earthquake Engineering Research & Test Center, Guangzhou University)
  • Received : 2022.02.11
  • Accepted : 2023.01.30
  • Published : 2023.02.25

Abstract

The existing concrete bridges are time-varying working systems, where the maintenance strategy should be planned according to the time-varying performance of the bridge. This work proposes a time-dependent residual capacity assessment procedure, which considers the non-stationary bridge load effects under growing traffic and non-stationary structural deterioration owing to material degradations. Lifetime bridge load effects under traffic growth are predicated by the non-stationary peaks-over-threshold (POT) method using time-dependent generalized Pareto distribution (GPD) models. The non-stationary structural resistance owing to material degradation is modeled by incorporating the Gamma deterioration process and field inspection data. A three-span continuous box-girder bridge is illustrated as an example to demonstrate the application of the proposed procedure, and the time-varying reliability indexes of the bridge girder are calculated. The accuracy of the proposed non-stationary POT method is verified through numerical examples, where the shape parameter of the time-varying GPD model is constant but the threshold and scale parameters are polynomial functions increasing with time. The case study illustrates that the residual flexural capacities show a degradation trend from a slow decrease to an accelerated decrease under traffic growth and material degradation. The reliability index for the mid-span cross-section reduces from 4.91 to 4.55 after being in service for 100 years, and the value is from 4.96 to 4.75 for the mid-support cross-section. The studied bridge shows no safety risk under traffic growth and structural deterioration owing to its high design safety reserve. However, applying the proposed numerical approach to analyze the degradation of residual bearing capacity for bridge structures with low safety reserves is of great significance for management and maintenance.

Keywords

Acknowledgement

This work was supported by the National Nature Science Foundation of China (grant number 51808148, 52178280), the Fundamental Research Program of Guangzhou Municipal College Joint Fund (SL2023A03J00897).

References

  1. Alampalli, S., Frangopol, D.M., Grimson, J., Halling M.W., Kosnik, D.E., Lantsoght, EO.L., Yang, D. and Zhou, Y.E. (2021), "Bridge load testing: State-of-the-practice", J. Bridge Eng., 26(3), 03120002. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001678.
  2. Begueria, S., Angulo-Martinez, M., Vicente-Serrano, S.M., Lopez-Moreno, J.I. and El-Kenawy, A. (2011), "Assessing trends in extreme precipitation events intensity and magnitude using non-stationary peaks-over-threshold analysis: A case study in northeast Spain from 1930 to 2006", Int. J. Climatol., 31(14), 2102-2114. https://doi.org/10.1002/joc.2218.
  3. Brady, K., O'Reilly, M.L.B., Znidaric, A., O'Brien, E. and Jordan, R. (2015), "COST 345-procedures required for the assessment of highway structures-final report", European Commission, Directorate General Transport and Energy, Bruxelles, Belgium.
  4. Cheng, J. and Li, C. (2021), "Fatigue reliability assessment of a three-tower four-span suspension bridge under stochastic traffic loads", Struct. Eng. Mech., 80(2), 221-229. https://doi.org/10.12989/sem.2021.80.2.221.
  5. Cook, W. and Barr, P.J. (2017), "Observations and trends among collapsed bridges in New York state", J. Perform. Constr. Facil., 31(4), 04017011. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000996.
  6. Dai, H.C., Shi, X.F. and Ruan, X. (2014), "Bending stiffness updating of bridge structures based on improved response-surface method", Zhongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Central South University (Science and Technology), 45(7), 2387-2393. (in Chinese)
  7. Davison, A.C. and Smith, R.L. (1990), "Models for exceedances over high thresholds", J. Roy. Stat. Soc.: Ser. B (Methodol.), 52(3), 393-425. https://doi.org/10.1111/j.2517-6161.1990.tb01796.x.
  8. de Zea Bermudez, P. and Kotz, S. (2010a), "Parameter estimation of the generalized Pareto distribution-Part II", J. Stat. Plan. Infer., 140(6), 1374-1388. https://doi.org/10.1016/j.jspi.2008.11.020.
  9. de Zea Bermudez, P. and Kotz, S. (2010b), "Parameter estimation of the generalized Pareto distribution-Part I", J. Stat. Plan. Infer., 140(6), 1353-1373. https://doi.org/10.1016/j.jspi.2008.11.019.
  10. Enright, M.P. and Frangopol, D.M. (1998), "Service-life prediction of deteriorating concrete bridges", J. Struct. Eng., 124(3), 309-317. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:3(309).
  11. Faber, M.H., Val, D.V. and Stewart, M.G. (2000), "Proof load testing for bridge assessment and upgrading", Eng. Struct., 22(12), 1677-1689. https://doi.org/10.1016/S0141-0296(99)00111-X.
  12. Fang, S.E. and Perera, R. (2009), "A response surface methodology based damage identification technique", Smart Mater. Struct., 18(6), 065009. https://doi.org/10.1088/0964-1726/18/6/065009.
  13. Gilleland, E. and Katz, R.W. (2011), "New software to analyze how extremes change over time", Eos, Trans. Am. Geophys. Union, 92(2), 13-14. https://doi.org/10.1029/2011EO020001.
  14. Herrmann, A. (2013), ASCE 2013 Report Card for America's Infrastructure, Reston, VA.
  15. Huang, H.Y., Zhou, J.Y., Zhang, J.P., Xu, W.X., Chen, Z.X. and Li, N.N. (2019), "Effects of revised toll-by-weight policy on truck overloading behavior and bridge infrastructure damage using weigh-in-motion data: a comparative study in China", Adv. Civil Eng., 2019, Article ID 5910463. https://doi.org/10.1155/2019/5910463.
  16. Ko, J.M. and Ni, Y.Q. (2005), "Technology developments in structural health monitoring of large-scale bridges", Eng. Struct., 27(12), 1715-1725. https://doi.org/10.1016/j.engstruct.2005.02.021.
  17. Koch, C., Georgieva, K., Kasireddy, V., Akinci, B. and Fieguth, P. (2015), "A review on computer vision based defect detection and condition assessment of concrete and asphalt civil infrastructure", Adv. Eng. Inform., 29(2), 196-210. https://doi.org/10.1016/j.aei.2015.01.008.
  18. Kysely, J., Picek, J. and Beranova, R. (2010), "Estimating extremes in climate change simulations using the peaks-over-threshold method with a non-stationary threshold", Glob. Planet. Change, 72(1-2), 55-68. https://doi.org/10.1016/j.gloplacha.2010.03.006.
  19. Lantsoght, E. O. L., van der Veen, C., de Boer, A. and Hordijk, D. A. (2017), "State-of-the-art on load testing of concrete bridges", Eng. Struct., 150, 231-241. https://doi.org/10.1016/j.engstruct.2017.07.050.
  20. Leahy, C., O'Brien, E. and O'Connor, A. (2016), "The effect of traffic growth on characteristic bridge load effects", Transp. Res. Procedia, 14, 3990-3999. https://doi.org/10.1016/j.trpro.2016.05.496.
  21. Li, Q., Wang, C. and Ellingwood, B.R. (2015), "Time-dependent reliability of aging structures in the presence of non-stationary loads and degradation", Struct. Saf., 52, 132-141. https://doi.org/10.1016/j.strusafe.2014.10.003.
  22. Lin, S.T.K., Lu, Y., Alamdari, M.M. and Khoa, N.L.D. (2022), "Neural network based numerical model updating and verification for a short span concrete culvert bridge by incorporating Monte Carlo simulations", Struct. Eng. Mech., 81(3), 293-303. https://doi.org/10.12989/sem.2022.81.3.293.
  23. Morgese, M., Ansari, F., Domaneschi, M. and Cimellaro, G.P. (2020), "Post-collapse analysis of Morandi's Polcevera viaduct in Genoa Italy", J. Civil Struct. Hlth. Monit., 10(1), 69-85. https://doi.org/10.1007/s13349-019-00370-7.
  24. Mori, B.Y. and Ellingwood, B.R. (1993), "Reliability-based service-life assessment of aging concrete structures", J. Struct. Eng., 119(5), 1600-1621. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:5(1600).
  25. NSW (2015), "Budget papers BP2 infrastructure statement", (August 23, 2022).
  26. O'Brien, E.J., Bordallo-Ruiz, A. and Enright, B. (2014), "Lifetime maximum load effects on short-span bridges subject to growing traffic volumes", Struct. Saf., 50, 113-122. https://doi.org/10.1016/j.strusafe.2014.05.005.
  27. Ren, W.X. and Chen, H.B. (2010), "Finite element model updating in structural dynamics by using the response surface method", Eng. Struct., 32(8), 2455-2465. https://doi.org/10.1016/j.engstruct.2010.04.019.
  28. Ruan, X., Zhou, J., Tu, H., Jin, Z. and Shi, X. (2017), "An improved cellular automaton with axis information for microscopic traffic simulation", Trans. Res. Part C: Emerg. Technol., 78, 63-77. https://doi.org/10.1016/j.trc.2017.02.023.
  29. Shi, X., Cao, Z., Ma, H. and Ruan, X. (2018), "Failure analysis on a curved girder bridge collapse under eccentric heavy vehicles using explicit finite element method: case study", J. Bridge Eng., 23(3), 05018001. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001201.
  30. Sigauke, C. and Bere, A. (2017), "Modelling non-stationary time serie s using a peaks over threshold distribution with time varying covariates and threshold: An application to peak electricity demand", Energy, 119, 152-166. https://doi.org/10.1016/j.energy.2016.12.027.
  31. Sun, L.M., Zhang, W. and Nagarajaiah, S. (2019), "Bridge realtime damage identification method using inclination and strain measurements in the presence of temperature variation", J. Bridge Eng., 24(2), 04018111. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001325.
  32. Thiombiano, A.N., El Adlouni, S., St-Hilaire, A., Ouarda, T.B.M.J. and El-Jabi, N. (2017), "Nonstationary frequency analysis of extreme daily precipitation amounts in Southeastern Canada using a peaks-over-threshold approach", Theor. Appl. Climatol., 129(1-2), 413-426. https://doi.org/10.1007/s00704-016-1789-7.
  33. Van Noortwijk, J.M. and Klatter, H.E. (1999), "Optimal inspection decisions for the block mats of the Eastern-Scheldt barrier", Reliab. Eng. Syst. Saf., 65(3), 203-211. https://doi.org/10.1016/S0951-8320(98)00097-0.
  34. Wang, C., Beer, M. and Ayyub, B.M. (2021), "Time-dependent reliability of aging structures: Overview of assessment methods", ASCE-ASME J. Risk Uncertain. Eng. Syst., Part A: Civil Eng., 7(4), 03121003. https://doi.org/10.1061/AJRUA6.0001176.
  35. Yang, X.C., Tang, H.Z., Cai, X., Wu, K.H., Huang, W.K., Zhang, Q.R. and Li. H. (2023), "Evaluating reclaimed asphalt mixture homogeneity using force chain transferring stress efficiency", Constr. Build. Mater., 365, 130050. https://doi.org/10.1016/j.conbuildmat.2022.130050.
  36. Yang, Y.B., Yang, J.P., Zhang, B. and Wu, Y.T. (2019), Vehicle Scanning Method for Bridge, John Wiley & Sons, London.
  37. Yu, Y., Cai, C.S., He, W. and Peng, H. (2019), "Prediction of bridge maximum load effects under growing traffic using non-stationary bayesian method", Eng. Struct., 185, 171-183. https://doi.org/10.1016/j.engstruct.2019.01.085.
  38. Yuan, Y.G., Han, W.S., Li, G.L., Xie, Q. and Guo, Q. (2019), "Time-dependent reliability assessment of existing concrete bridges including non-stationary vehicle load and resistance processes", Eng. Struct., 197, 109426. https://doi.org/10.1016/j.engstruct.2019.109426.
  39. Zhou, J. Y., Lu, Z.L., Zhou, Z.N., Pan, C.D., Cao, S.S., Cheng, J.T. and Zhang, J.P. (2023), "Extraction of bridge mode shapes from the response of a two-axle passing vehicle using a two-peak spectrum idealized filter approach", Mech. Syst. Signal Pr., 190(1), 110122, https://doi.org/10.1016/j.ymssp.2023.110122.
  40. Zhou, J.Y., Hu, C.M., Zhang, J.P., Li, T. and Yang, M.G. (2022), "Reliability assessment of existing concrete bridges under the passage of heavy trucks considering bending-shear interaction", Struct. Infrastr. Eng., 1-17. https://doi.org/10.1080/15732479.2022.2026980.
  41. Zhou, J.Y., Liu, Y.Y. and Yi, J. (2020b), "Effect of uneven multilane truck loading of multigirder bridges on component reliability", Struct. Concrete, 21(4), 1644-1661. https://doi.org/10.1002/suco.201900475.
  42. Zhou, J.Y., Ruan, X., Shi, X.F. and Pan, C.D. (2020a), "Extreme value modeling of structural load effects with non-identical distribution using clustering", Struct. Eng. Mech., 74(1), 55-67. https://doi.org/10.12989/sem.2020.74.1.055.
  43. Zhou, J.Y., Shi, X.F., Zhang, L.W. and Sun, Z. (2019), "Traffic control technologies without interruption for component replacement of long-span bridges using microsimulation and site-specific data", Struct. Eng. Mech., 70(2), 169-178. https://doi.org/10.12989/sem.2019.70.2.169.
  44. Zhou, J.Y., Sun, Z., Wei, B., Zhang, L.W. and Zeng, P. (2021), "Deflection-based multilevel structural condition assessment of long-span prestressed concrete girder bridges using a connected pipe system", Measure., 169, 108352. https://doi.org/10.1016/j.measurement.2020.108352.