DOI QR코드

DOI QR Code

Wave propagation in spherical and cylindrical panels reinforced with carbon nanotubes

  • Yi-Wen Zhang (College of Mechanical and Vehicle Engineering, Chongqing University) ;
  • Hao-Xuan Ding (College of Mechanical and Vehicle Engineering, Chongqing University) ;
  • Gui-Lin She (College of Mechanical and Vehicle Engineering, Chongqing University)
  • Received : 2022.01.29
  • Accepted : 2023.01.12
  • Published : 2023.01.10

Abstract

Based on the third-order shear deformation theory, the wave propagations in doubly curved spherical- and cylindrical- panels reinforced by carbon nanotubes (CNTs) are firstly investigated in present work. The coupled equations of wave propagation for the carbon nanotubes reinforced composite (CNTRC) doubly curved panels are established. Then, combined with the harmonic balance method, the eigenvalue technique is adopted to simulate the velocity-wave number curves of the CNTRC doubly curved panels. In the end, numerical results are showed to discuss the effects of the impact of key parameters including the volume fraction, different shell types (including spherical (R1=R2=R) and cylindrical (R1=R, R2=→∞)), wave number as well as modal number on the sensitivity of elastic waves propagating in CNTRC doubly curved shells.

Keywords

References

  1. Abad, F. and Rouzegar, J. (2019), "Exact wave propagation analysis of moderately thick levy-type plate with piezoelectric layers using spectral element method", Thin. Wall. Struct., 141, 319-331. https://doi.org/10.1016/j.tws.2019.04.007.
  2. Abdelrahman, A.A., Esen, I., Daikh, A.A., Eltaher, M.A. (2021), "Dynamic analysis of FG nanobeam reinforced by carbon nanotubes and resting on elastic foundation under moving load", Mech Based Des. Struct., https://doi.org/10.1080/15397734.2021.1999263.
  3. Affdl, J.C.H. and Kardos, J.L. (1976), "The halpin-tsai equations: a review", Polym. Eng. Sci., 16(5), 344-352. https://doi.org/10.1002/pen.760160512.
  4. Alazwari, M.A., Daikh, A.A., Houari, M.S.A., Tounsi, A. and Eltaher, M.A. (2021), "On static buckling of multilayered carbon nanotubes reinforced composite nanobeams supported on non-linear elastic foundations", Steel. Compos. Struct., 40(3), 389-404. https://doi.org/10.12989/scs.2021.40.3.389.
  5. Aminipour, H. and Janghorban, M. (2016), "Wave propagation in anisotropic plates using trigonometric shear deformation theory", Mech. Adv. Mater. Struct., 24(13), 1135-1144. https://doi.org/10.1080/15376494.2016.1227500.
  6. Aminipour, H., Janghorban, M. and Li, L. (2018), "A new model for wave propagation in functionally graded anisotropic doublycurved shells", Compos. Struct., 190, 91-111. https://doi.org/10.1016/j.compstruct.2018.02.003.
  7. Babaei, H. (2021a), "On frequency response of FG-CNT reinforced composite pipes in thermally pre/post buckled configurations", Compos. Struct., 276, 114467, https://doi.org/10.1016/j.compstruct.2021.114467.
  8. Babaei, H. (2021b), "Thermoelastic buckling and post-buckling behavior of temperature-dependent nanocomposite pipes reinforced with CNTs", Eur. Phys. J. Plus., 136, 1093 https://doi.org/10.1140/epjp/s13360-021-01992-x.
  9. Babaei, H. (2022a), "Free vibration and snap-through instability of FG-CNTRC shallow arches supported on nonlinear elastic foundation", Appl. Math. Comput., 413, 126606, https://doi.org/10.1016/j.amc.2021.126606.
  10. Babaei, H. (2022b), "Thermomechanical analysis of snap-buckling phenomenon in long FG-CNTRC cylindrical panels resting on nonlinear elastic foundation", Compos. Struct., 286, 115199, https://doi.org/10.1016/j.compstruct.2022.115199.
  11. Bisheh, H. and Wu, N. (2019a), "Wave propagation in piezoelectric cylindrical composite shells reinforced with angled and randomly oriented carbon nanotubes", Compos., 160, 10-30. https://doi.org/10.1016/j.compositesb.2018.10.001.
  12. Bisheh, H. and Wu, N. (2019b), "Wave propagation in smart laminated composite cylindrical shells reinforced with carbon nanotubes in hygrothermal environments", Compos., 162, 219-241. https://doi.org/ 10.1016/j.compositesb.2018.10.064.
  13. Boulal, A., Bensattalah, T., Karas, A., Zidour, M., Heireche, H. and Bedia, E. (2020), "Buckling of carbon nanotube reinforced composite plates supported by kerr foundation using hamilton's energy principle", Struct. Eng. Mech., 73(2), 209-223. https://doi.org/ 10.12989/sem.2020.73.2.209.
  14. Chen, X., Zhao, J.L., She, G.L., Jing, Y., Luo, J. and Pu, H.Y. (2022), "On wave propagation of functionally graded CNT strengthened fluid-conveying pipe in thermal environment", Eur. Phys. J. Plus., 137(10), 1158. https://doi.org/10.1140/epjp/s13360-022-03234-0.
  15. Daikh, A.A., Houari, M.S.A., Belarbi, M.O., Chakraverty S., Eltaher, M.A. (2022), "Analysis of axially temperaturedependent functionally graded carbon nanotube reinforced composite plates", Eng. Comput., 38(3), 2533-2554 https://doi.org/10.1007/s00366-021-01413-8.
  16. Ding, H.X. and She, G.L. (2021), "A higher-order beam model for the snap-buckling analysis of FG pipes conveying fluid", Struct. Eng. Mech., 80(1), 63-72. http://dx.doi.org/10.12989/sem.2021.80.1.063.
  17. Ding, H.X., She, G.L. and Zhang, Y.W. (2022a), "Nonlinear buckling and resonances of functionally graded fluid-conveying pipes with initial geometric imperfection", Eur. Phys. J. Plus, 137, 1329. https://doi.org/10.1140/epjp/s13360-022-03570-1.
  18. Ding, H.X., Zhang, Y.W. and She, G.L. (2022b), "On the resonance problems in FG-GPLRC beams with different boundary conditions resting on elastic foundations", Comput. Concrete, 30(6), 433-443. https://doi.org/10.12989/cac.2022.30.6.433.
  19. Ebrahimi, F. and Dabbagh, A. (2018), "Thermo-magnetic field effects on the wave propagation behavior of smart magnetostrictive sandwich nanoplates", Eur. Phys. J. Plus., 133(3), 97. https://doi.org/10.1140/epjp/i2018-11910-7.
  20. Eltaher, M.A. and Mohamed, S.A (2020). "Buckling and stability analysis of sandwich beams subjected to varying axial loads", Steel. Compos. Struct., 34(2), 241-260. https://doi.org/10.12989/scs.2020.34.2.241.
  21. Esen, I., Daikh, A.A. and Eltaher, M.A. (2021), "Dynamic response of nonlocal strain gradient FG nanobeam reinforced by carbon nanotubes under moving point load", Eur. Phys. J. Plus., 136, 458. https://doi.org/10.1140/epjp/s13360-021-01419-7.
  22. Farzad, E. and Pooya, R. (2018), "Wave propagation analysis of carbon nanotube reinforced composite beams", Eur. Phys. J. Plus., 133(7), 285. https://doi.org/10.1140/epjp/i2018-12069-y.
  23. Ghayoumizadeh, H., Shahabian, F. and Hosseini, S.M. (2013), "Elastic wave propagation in a functionally graded nanocomposite reinforced by carbon nanotubes employing meshless local integral equations", Eng Anal Bound Elem., 37(11), 1524-1531. https://doi.org/10.1016/j.enganabound.2013.08.011.
  24. Hadji, L., Meziane, M. and Safa, A. (2018), "A new quasi-3d higher shear deformation theory for vibration of functionally graded carbon nanotube-reinforced composite beams resting on elastic foundation", Struct. Eng. Mech., 66(6), 771-781. https://doi.org/10.12989/sem.2018.66.6.771.
  25. Hamed, M.A., Mohamed, S.A. and Eltaher, M.A. (2020), "Buckling analysis of sandwich beam rested on elastic foundation and subjected to varying axial in-plane loads", Steel Compos. Struct., 34(1), 75-89. https://doi.org/10.12989/scs.2020.34.1.075.
  26. Hendi, A.A., Eltaher, M.A., Mohamed, S.A., Attia, M.A. and Abdalla, A.W. (2021), "Nonlinear thermal vibration of pre/postbuckled two-dimensional FGM tapered microbeams based on a higher order shear deformation theory", Steel Compos. Struct., 41(6), 787-802. https://doi.org/10.12989/scs.2021.41.6.787.
  27. Hussein, O.S. and Mulani, S.B. (2018), "Optimization of in-plane functionally graded panels for buckling strength: unstiffened, stiffened panels, and panels with cutouts", Thin. Wall. Struct., 122, 173-181. https://doi.org/10.1016/j.tws.2017.10.025.
  28. Jamali, M., Arani, A.G., Mosayy, M., Kolahchi, R. and Esfahani, R. T. (2017), "Wave propagation behavior of coupled viscoelastic fg-cntrpc micro plates subjected to electro-magnetic fields surrounded by orthotropic visco-pasternak foundation", Microsystem Technol., 23(8), 3791-3816. https://doi.org/10.1007/s00542-016-3232-5.
  29. Karami, B., Shahsavari, D. and Janghorban, M. (2019a), "On the dynamics of porous doubly-curved nanoshells", Int. J. Eng. Sci., 143, 39-55. https://doi.org/10.1016/j.ijengsci.2019.06.014.
  30. Karami, B., Shahsavari, D., Janghorban, M. and Li, L. (2019b), "Elastic guided waves in fully-clamped functionally graded carbon nanotube-reinforced composite plates", Mater Res Express., 6(9), 0950a9. https://doi.org/10.1088/2053-1591/ab3474.
  31. Li, L., and Hu, Y. (2015), "Buckling analysis of size-dependent nonlinear beams based on a nonlocal strain gradient theory", Int. J. Eng. Sci., 97, 84-94. https://doi.org/10.1016/j.ijengsci.2015.08.013
  32. Lim, C. W., Zhang, G., Reddy, J. N. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solid., 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001.
  33. Liu, C., Yu, J., Xu, W., Zhang, X. and Zhang, B. (2020), "Theoretical study of elastic wave propagation through a functionally graded micro-structured plate base on the modified couple-stress theory", Meccanica, 55(5), 1153-1167. https://doi.org/ 10.1007/s11012-020-01156-8.
  34. Lu, L., She, G.L., and Guo, X. (2021), "Size-dependent postbuckling analysis of graphene reinforced composite microtubes with geometrical imperfection", Int. J. Mech. Sci., 199, 106428. https://doi.org/10.1016/j.ijmecsci.2021.106428.
  35. Ma, L.H., Ke, L.L., Wang, Y.Z. and Wang, Y.S. (2018), "Wave propagation analysis of piezoelectric nanoplates based on the nonlocal theory", Int. J. struct. Stab. Dy., 18(4), 1850060. https://doi.org/ 10.1142/S0219455418500608.
  36. Malikan, M., Tornabene, F. and Dimitri, R. (2019), "Transient response of oscillated carbon nanotubes with an internal and external damping", Compos. Part B: Eng., 158, 198-205. https://doi.org/10.1016/j.compositesb.2018.09.092.
  37. Malikan, M., Wiczenbach, T. and Eremeyev, V.A. (2022), "Thermal buckling of functionally graded piezomagnetic microand nanobeams presenting the flexomagnetic effect", Continum Mech. Thermodyn., 34(4), 1051-1066. https://doi.org/10.1007/s00161-021-01038-8.
  38. Melaibari, A., Daikh, A.A., Basha, M., Abdalla, A.W., Othman, R., Almitani, K.H., Hamed, M.A., Abdelrahman, A., Eltaher, M.A. (2022a), "Free vibration of FG-CNTRCs nano-plates/shells with temperature-dependent properties", Mathematics, 10, 583. https://doi.org/10.3390/math10040583.
  39. Melaibari, A., Daikh, A.A., Basha, M., Wagih, A., Othman, R., Almitani, K.H., Hamed, M.A., Abdelrahman, A., Eltaher, M.A. (2022b), "A dynamic analysis of randomly oriented functionally graded carbon nanotubes/fiber-reinforced composite laminated shells with different geometries", Mathemat., 10, 408. https://doi.org/10.3390/math10030408.
  40. Melaibari, A., Khoshaim, A.B., Mohamed, S.A. and Eltaher, M.A. (2020), "Static stability and of symmetric and sigmoid functionally graded beam under variable axial load", Steel. Compos. Struct., 35(5), 671-685. https://doi.org/10.12989/scs.2020.35.5.671.
  41. Mohandes, M. and Ghasemi, A.R. (2019), "A new approach to reinforce the fiber of nanocomposite reinforced by cnts to analyze free vibration of hybrid laminated cylindrical shell using beam modal function method - sciencedirect", Eur. J. Mech. A-Solid., 73, 224-234. https://doi.org/10.1016/j.euromechsol.2018.09.006
  42. Moradi-Dastjerdi, R., Foroutan, M., and Pourasghar, A. (2013), "Dynamic analysis of functionally graded nanocomposite cylinders reinforced by carbon nanotube by a mesh-free method", Mater. Des., 44, 256-266. https://doi.org/10.1016/j.matdes.2012.07.069.
  43. Phung-Van, P., Abdel-Wahab, M., Liew, K.M., Bordas, S.P.A., Nguyen-Xuan, H. (2015), "Lsogeometric analysis of functionally graded carbon nanotube-reinforced composite plates using higher-order shear deformation theory", Compos. Struct., 123, 137-149. https://doi.org/10.1016/j.compstruct.2014.12.021.
  44. Shaikh, H., Gulrez, S.K.H., Anis, A., Poulose, A.M., and AlZahrani, S.M. (2014), "Progress in carbon fiber and its polypropylene- and polyethylene-based composites", PolymPlast Technol., 53(17), 1845-1860. https://doi.org/10.1080/03602559.2014.886122.
  45. She, G.L. (2021), "Guided wave propagation of porous functionally graded plates: The effect of thermal loadings", J. thermal stresses., 44(10), 1289-1305. https://doi.org/10.1080/01495739.2021.1974323.
  46. She, G.L. and Ding, H.X. (2023), "Nonlinear primary resonance analysis of initially stressed graphene platelet reinforced metal foams doubly curved shells with geometric imperfection", Acta Mech. Sin., 39, 522392. https://doi.org/10.1007/s10409-022-22392-x.
  47. She, G.L., Ding, H.X. and Zhang, Y.W. (2022), "Wave propagation in an FG circular plate via the physical neutral surface concept", Struct. Eng. Mech., 82(2), 225-232. https://doi.org/10.12989/sem.2022.82.2.225.
  48. She, G.L. and Li, Y.P. (2022), "Wave propagation in an FG circular plate in thermal environment", Geomech. Eng., 31(6), 615-622. https://doi.org/10.12989/gae.2022.31.6.615.
  49. She, G.L., Liu, H.B., and Karami, B. (2021), "Resonance analysis of composite curved microbeams reinforced with graphene nanoplatelets", Thin Wall. Struct., 160, 107407. https://doi.org/10.1016/j.tws.2020.107407.
  50. Srinivasan, V., Kunjiappan, S. and Palanisamy, P. (2021), "A brief review of carbon nanotube reinforced metal matrix composites for aerospace and defense applications", Int. Nano Lett., 11(4), 321-345. https://doi.org/10.1007/s40089-021-00328-y.
  51. Talebitooti, R., Ahmadi, R. and Shojaeefard, M.H. (2015), "Threedimensional wave propagation on orthotropic cylindrical shells with arbitrary thickness considering state space method", Compos. Struct., 132, 239-254. https://doi.org/10.1016/j.compstruct.2015.05.023.
  52. Thang, P.T., Nguyen, T.T. and Lee, J. (2017), "A new approach for nonlinear buckling analysis of imperfect functionally graded carbon nanotube-reinforced composite plates", Compos. Part-B Eng., 127, 166-174. https://doi.org/10.1016/j.compositesb.2016.12.002.
  53. Timesli, A. (2020), "Prediction of the critical buckling load of swcnt reinforced concrete cylindrical shell embedded in an elastic foundation", Comput Concrete, 26(1), 53-62. https://doi.org/10.12989/cac.2020.26.1.053.
  54. Wang, Y.Q., Liang, C. and Zu, J.W. (2019), "Wave propagation in functionally graded cylindrical nanoshells based on nonlocal flugge shell theory", Eur. Phys. J. Plus, 134(5), 1-15. https://doi.org/10.1140/epjp/i2019-12543-0.
  55. Xu, J.Q. and She, G.L. (2022), "Thermal post-buckling analysis of porous functionally graded pipes with initial geometric imperfection", Geomech. Eng., 31(3), 329-337. https://doi.org/10.12989/gae.2022.31.3.329.
  56. Zeighampour, H., Beni, Y.T. and Karimipour, I. (2017), "Material length scale and nonlocal effects on the wave propagation of composite laminated cylindrical micro/nano shells", Eur. Phys. J. Plus., 132(12), 503. https://doi.org/10.1140/epjp/i2017-11770-7.
  57. Zhang, Y.W., Ding, H.X. and She, G.L. (2022), "Snap-buckling and resonance of functionally graded graphene reinforced composites curved beams resting on elastic foundations in thermal environment", J. Therm. Stresses, 45(12), 1029-1042. https://doi.org/10.1080/01495739.2022.2125137.
  58. Zhang, Y.W. and She, G.L. (2022), "Wave propagation and vibration of FG pipes conveying hot fluid", Steel. Compos, Struct., 42(3) 397-405. https://doi.org/10.12989/scs.2022.42.3.397.
  59. Zhang, Y.W. and She, G.L. (2023), "Nonlinear low-velocity impact response of graphene platelet-reinforced metal foam cylindrical shells under axial motion with geometrical imperfection", Nonlinear Dyn., 1-18. https://doi.org/10.1007/s11071-022-08186-9.
  60. Zhang, Y.W., She, G.L. and Ding, H.X. (2023), "Nonlinear resonance of graphene platelets reinforced metal foams plates under axial motion with geometric imperfections", Eur. J. Mech. A-Solid., 98, 104887. https://doi.org/10.1016/j.euromechsol.2022.104887.
  61. Zhang, Y.Y., Wang, X.Y., Zhang, X., Shen, H.M. and She, G.L. (2021), "On snap-buckling of FG-CNTRC curved nanobeams considering surface effects", Steel Compos. Struct., 38(3), 293-304. https://doi.org/10.12989/scs.2021.38.3.293.
  62. Zhao, J.L., Chen, X., She, G.L., Jing, Y., Bai, R.Q., Yi, J., Pu, H.Y. and Luo, J. (2022a), "Vibration characteristics of functionally graded carbon nanotube-reinforced composite double-beams in thermal environments", Steel. Compos. Struct., 43(6), 797-808. https://doi.org/10.12989/scs.2022.43.6.797.
  63. Zhao, J.L., She, G.L., Wu, F., Yuan, S.J., Bai, R.Q., Pu, H.Y., Wang, S.L. and Luo, J. (2022b), "Guided waves of porous FG nanoplates with four edges clamped", Adv. Nano. Res., 13(5), 465-474. https://10.12989/anr.2022.13.5.465.