References
- Abad, F. and Rouzegar, J. (2019), "Exact wave propagation analysis of moderately thick levy-type plate with piezoelectric layers using spectral element method", Thin. Wall. Struct., 141, 319-331. https://doi.org/10.1016/j.tws.2019.04.007.
- Abdelrahman, A.A., Esen, I., Daikh, A.A., Eltaher, M.A. (2021), "Dynamic analysis of FG nanobeam reinforced by carbon nanotubes and resting on elastic foundation under moving load", Mech Based Des. Struct., https://doi.org/10.1080/15397734.2021.1999263.
- Affdl, J.C.H. and Kardos, J.L. (1976), "The halpin-tsai equations: a review", Polym. Eng. Sci., 16(5), 344-352. https://doi.org/10.1002/pen.760160512.
- Alazwari, M.A., Daikh, A.A., Houari, M.S.A., Tounsi, A. and Eltaher, M.A. (2021), "On static buckling of multilayered carbon nanotubes reinforced composite nanobeams supported on non-linear elastic foundations", Steel. Compos. Struct., 40(3), 389-404. https://doi.org/10.12989/scs.2021.40.3.389.
- Aminipour, H. and Janghorban, M. (2016), "Wave propagation in anisotropic plates using trigonometric shear deformation theory", Mech. Adv. Mater. Struct., 24(13), 1135-1144. https://doi.org/10.1080/15376494.2016.1227500.
- Aminipour, H., Janghorban, M. and Li, L. (2018), "A new model for wave propagation in functionally graded anisotropic doublycurved shells", Compos. Struct., 190, 91-111. https://doi.org/10.1016/j.compstruct.2018.02.003.
- Babaei, H. (2021a), "On frequency response of FG-CNT reinforced composite pipes in thermally pre/post buckled configurations", Compos. Struct., 276, 114467, https://doi.org/10.1016/j.compstruct.2021.114467.
- Babaei, H. (2021b), "Thermoelastic buckling and post-buckling behavior of temperature-dependent nanocomposite pipes reinforced with CNTs", Eur. Phys. J. Plus., 136, 1093 https://doi.org/10.1140/epjp/s13360-021-01992-x.
- Babaei, H. (2022a), "Free vibration and snap-through instability of FG-CNTRC shallow arches supported on nonlinear elastic foundation", Appl. Math. Comput., 413, 126606, https://doi.org/10.1016/j.amc.2021.126606.
- Babaei, H. (2022b), "Thermomechanical analysis of snap-buckling phenomenon in long FG-CNTRC cylindrical panels resting on nonlinear elastic foundation", Compos. Struct., 286, 115199, https://doi.org/10.1016/j.compstruct.2022.115199.
- Bisheh, H. and Wu, N. (2019a), "Wave propagation in piezoelectric cylindrical composite shells reinforced with angled and randomly oriented carbon nanotubes", Compos., 160, 10-30. https://doi.org/10.1016/j.compositesb.2018.10.001.
- Bisheh, H. and Wu, N. (2019b), "Wave propagation in smart laminated composite cylindrical shells reinforced with carbon nanotubes in hygrothermal environments", Compos., 162, 219-241. https://doi.org/ 10.1016/j.compositesb.2018.10.064.
- Boulal, A., Bensattalah, T., Karas, A., Zidour, M., Heireche, H. and Bedia, E. (2020), "Buckling of carbon nanotube reinforced composite plates supported by kerr foundation using hamilton's energy principle", Struct. Eng. Mech., 73(2), 209-223. https://doi.org/ 10.12989/sem.2020.73.2.209.
- Chen, X., Zhao, J.L., She, G.L., Jing, Y., Luo, J. and Pu, H.Y. (2022), "On wave propagation of functionally graded CNT strengthened fluid-conveying pipe in thermal environment", Eur. Phys. J. Plus., 137(10), 1158. https://doi.org/10.1140/epjp/s13360-022-03234-0.
- Daikh, A.A., Houari, M.S.A., Belarbi, M.O., Chakraverty S., Eltaher, M.A. (2022), "Analysis of axially temperaturedependent functionally graded carbon nanotube reinforced composite plates", Eng. Comput., 38(3), 2533-2554 https://doi.org/10.1007/s00366-021-01413-8.
- Ding, H.X. and She, G.L. (2021), "A higher-order beam model for the snap-buckling analysis of FG pipes conveying fluid", Struct. Eng. Mech., 80(1), 63-72. http://dx.doi.org/10.12989/sem.2021.80.1.063.
- Ding, H.X., She, G.L. and Zhang, Y.W. (2022a), "Nonlinear buckling and resonances of functionally graded fluid-conveying pipes with initial geometric imperfection", Eur. Phys. J. Plus, 137, 1329. https://doi.org/10.1140/epjp/s13360-022-03570-1.
- Ding, H.X., Zhang, Y.W. and She, G.L. (2022b), "On the resonance problems in FG-GPLRC beams with different boundary conditions resting on elastic foundations", Comput. Concrete, 30(6), 433-443. https://doi.org/10.12989/cac.2022.30.6.433.
- Ebrahimi, F. and Dabbagh, A. (2018), "Thermo-magnetic field effects on the wave propagation behavior of smart magnetostrictive sandwich nanoplates", Eur. Phys. J. Plus., 133(3), 97. https://doi.org/10.1140/epjp/i2018-11910-7.
- Eltaher, M.A. and Mohamed, S.A (2020). "Buckling and stability analysis of sandwich beams subjected to varying axial loads", Steel. Compos. Struct., 34(2), 241-260. https://doi.org/10.12989/scs.2020.34.2.241.
- Esen, I., Daikh, A.A. and Eltaher, M.A. (2021), "Dynamic response of nonlocal strain gradient FG nanobeam reinforced by carbon nanotubes under moving point load", Eur. Phys. J. Plus., 136, 458. https://doi.org/10.1140/epjp/s13360-021-01419-7.
- Farzad, E. and Pooya, R. (2018), "Wave propagation analysis of carbon nanotube reinforced composite beams", Eur. Phys. J. Plus., 133(7), 285. https://doi.org/10.1140/epjp/i2018-12069-y.
- Ghayoumizadeh, H., Shahabian, F. and Hosseini, S.M. (2013), "Elastic wave propagation in a functionally graded nanocomposite reinforced by carbon nanotubes employing meshless local integral equations", Eng Anal Bound Elem., 37(11), 1524-1531. https://doi.org/10.1016/j.enganabound.2013.08.011.
- Hadji, L., Meziane, M. and Safa, A. (2018), "A new quasi-3d higher shear deformation theory for vibration of functionally graded carbon nanotube-reinforced composite beams resting on elastic foundation", Struct. Eng. Mech., 66(6), 771-781. https://doi.org/10.12989/sem.2018.66.6.771.
- Hamed, M.A., Mohamed, S.A. and Eltaher, M.A. (2020), "Buckling analysis of sandwich beam rested on elastic foundation and subjected to varying axial in-plane loads", Steel Compos. Struct., 34(1), 75-89. https://doi.org/10.12989/scs.2020.34.1.075.
- Hendi, A.A., Eltaher, M.A., Mohamed, S.A., Attia, M.A. and Abdalla, A.W. (2021), "Nonlinear thermal vibration of pre/postbuckled two-dimensional FGM tapered microbeams based on a higher order shear deformation theory", Steel Compos. Struct., 41(6), 787-802. https://doi.org/10.12989/scs.2021.41.6.787.
- Hussein, O.S. and Mulani, S.B. (2018), "Optimization of in-plane functionally graded panels for buckling strength: unstiffened, stiffened panels, and panels with cutouts", Thin. Wall. Struct., 122, 173-181. https://doi.org/10.1016/j.tws.2017.10.025.
- Jamali, M., Arani, A.G., Mosayy, M., Kolahchi, R. and Esfahani, R. T. (2017), "Wave propagation behavior of coupled viscoelastic fg-cntrpc micro plates subjected to electro-magnetic fields surrounded by orthotropic visco-pasternak foundation", Microsystem Technol., 23(8), 3791-3816. https://doi.org/10.1007/s00542-016-3232-5.
- Karami, B., Shahsavari, D. and Janghorban, M. (2019a), "On the dynamics of porous doubly-curved nanoshells", Int. J. Eng. Sci., 143, 39-55. https://doi.org/10.1016/j.ijengsci.2019.06.014.
- Karami, B., Shahsavari, D., Janghorban, M. and Li, L. (2019b), "Elastic guided waves in fully-clamped functionally graded carbon nanotube-reinforced composite plates", Mater Res Express., 6(9), 0950a9. https://doi.org/10.1088/2053-1591/ab3474.
- Li, L., and Hu, Y. (2015), "Buckling analysis of size-dependent nonlinear beams based on a nonlocal strain gradient theory", Int. J. Eng. Sci., 97, 84-94. https://doi.org/10.1016/j.ijengsci.2015.08.013
- Lim, C. W., Zhang, G., Reddy, J. N. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solid., 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001.
- Liu, C., Yu, J., Xu, W., Zhang, X. and Zhang, B. (2020), "Theoretical study of elastic wave propagation through a functionally graded micro-structured plate base on the modified couple-stress theory", Meccanica, 55(5), 1153-1167. https://doi.org/ 10.1007/s11012-020-01156-8.
- Lu, L., She, G.L., and Guo, X. (2021), "Size-dependent postbuckling analysis of graphene reinforced composite microtubes with geometrical imperfection", Int. J. Mech. Sci., 199, 106428. https://doi.org/10.1016/j.ijmecsci.2021.106428.
- Ma, L.H., Ke, L.L., Wang, Y.Z. and Wang, Y.S. (2018), "Wave propagation analysis of piezoelectric nanoplates based on the nonlocal theory", Int. J. struct. Stab. Dy., 18(4), 1850060. https://doi.org/ 10.1142/S0219455418500608.
- Malikan, M., Tornabene, F. and Dimitri, R. (2019), "Transient response of oscillated carbon nanotubes with an internal and external damping", Compos. Part B: Eng., 158, 198-205. https://doi.org/10.1016/j.compositesb.2018.09.092.
- Malikan, M., Wiczenbach, T. and Eremeyev, V.A. (2022), "Thermal buckling of functionally graded piezomagnetic microand nanobeams presenting the flexomagnetic effect", Continum Mech. Thermodyn., 34(4), 1051-1066. https://doi.org/10.1007/s00161-021-01038-8.
- Melaibari, A., Daikh, A.A., Basha, M., Abdalla, A.W., Othman, R., Almitani, K.H., Hamed, M.A., Abdelrahman, A., Eltaher, M.A. (2022a), "Free vibration of FG-CNTRCs nano-plates/shells with temperature-dependent properties", Mathematics, 10, 583. https://doi.org/10.3390/math10040583.
- Melaibari, A., Daikh, A.A., Basha, M., Wagih, A., Othman, R., Almitani, K.H., Hamed, M.A., Abdelrahman, A., Eltaher, M.A. (2022b), "A dynamic analysis of randomly oriented functionally graded carbon nanotubes/fiber-reinforced composite laminated shells with different geometries", Mathemat., 10, 408. https://doi.org/10.3390/math10030408.
- Melaibari, A., Khoshaim, A.B., Mohamed, S.A. and Eltaher, M.A. (2020), "Static stability and of symmetric and sigmoid functionally graded beam under variable axial load", Steel. Compos. Struct., 35(5), 671-685. https://doi.org/10.12989/scs.2020.35.5.671.
- Mohandes, M. and Ghasemi, A.R. (2019), "A new approach to reinforce the fiber of nanocomposite reinforced by cnts to analyze free vibration of hybrid laminated cylindrical shell using beam modal function method - sciencedirect", Eur. J. Mech. A-Solid., 73, 224-234. https://doi.org/10.1016/j.euromechsol.2018.09.006
- Moradi-Dastjerdi, R., Foroutan, M., and Pourasghar, A. (2013), "Dynamic analysis of functionally graded nanocomposite cylinders reinforced by carbon nanotube by a mesh-free method", Mater. Des., 44, 256-266. https://doi.org/10.1016/j.matdes.2012.07.069.
- Phung-Van, P., Abdel-Wahab, M., Liew, K.M., Bordas, S.P.A., Nguyen-Xuan, H. (2015), "Lsogeometric analysis of functionally graded carbon nanotube-reinforced composite plates using higher-order shear deformation theory", Compos. Struct., 123, 137-149. https://doi.org/10.1016/j.compstruct.2014.12.021.
- Shaikh, H., Gulrez, S.K.H., Anis, A., Poulose, A.M., and AlZahrani, S.M. (2014), "Progress in carbon fiber and its polypropylene- and polyethylene-based composites", PolymPlast Technol., 53(17), 1845-1860. https://doi.org/10.1080/03602559.2014.886122.
- She, G.L. (2021), "Guided wave propagation of porous functionally graded plates: The effect of thermal loadings", J. thermal stresses., 44(10), 1289-1305. https://doi.org/10.1080/01495739.2021.1974323.
- She, G.L. and Ding, H.X. (2023), "Nonlinear primary resonance analysis of initially stressed graphene platelet reinforced metal foams doubly curved shells with geometric imperfection", Acta Mech. Sin., 39, 522392. https://doi.org/10.1007/s10409-022-22392-x.
- She, G.L., Ding, H.X. and Zhang, Y.W. (2022), "Wave propagation in an FG circular plate via the physical neutral surface concept", Struct. Eng. Mech., 82(2), 225-232. https://doi.org/10.12989/sem.2022.82.2.225.
- She, G.L. and Li, Y.P. (2022), "Wave propagation in an FG circular plate in thermal environment", Geomech. Eng., 31(6), 615-622. https://doi.org/10.12989/gae.2022.31.6.615.
- She, G.L., Liu, H.B., and Karami, B. (2021), "Resonance analysis of composite curved microbeams reinforced with graphene nanoplatelets", Thin Wall. Struct., 160, 107407. https://doi.org/10.1016/j.tws.2020.107407.
- Srinivasan, V., Kunjiappan, S. and Palanisamy, P. (2021), "A brief review of carbon nanotube reinforced metal matrix composites for aerospace and defense applications", Int. Nano Lett., 11(4), 321-345. https://doi.org/10.1007/s40089-021-00328-y.
- Talebitooti, R., Ahmadi, R. and Shojaeefard, M.H. (2015), "Threedimensional wave propagation on orthotropic cylindrical shells with arbitrary thickness considering state space method", Compos. Struct., 132, 239-254. https://doi.org/10.1016/j.compstruct.2015.05.023.
- Thang, P.T., Nguyen, T.T. and Lee, J. (2017), "A new approach for nonlinear buckling analysis of imperfect functionally graded carbon nanotube-reinforced composite plates", Compos. Part-B Eng., 127, 166-174. https://doi.org/10.1016/j.compositesb.2016.12.002.
- Timesli, A. (2020), "Prediction of the critical buckling load of swcnt reinforced concrete cylindrical shell embedded in an elastic foundation", Comput Concrete, 26(1), 53-62. https://doi.org/10.12989/cac.2020.26.1.053.
- Wang, Y.Q., Liang, C. and Zu, J.W. (2019), "Wave propagation in functionally graded cylindrical nanoshells based on nonlocal flugge shell theory", Eur. Phys. J. Plus, 134(5), 1-15. https://doi.org/10.1140/epjp/i2019-12543-0.
- Xu, J.Q. and She, G.L. (2022), "Thermal post-buckling analysis of porous functionally graded pipes with initial geometric imperfection", Geomech. Eng., 31(3), 329-337. https://doi.org/10.12989/gae.2022.31.3.329.
- Zeighampour, H., Beni, Y.T. and Karimipour, I. (2017), "Material length scale and nonlocal effects on the wave propagation of composite laminated cylindrical micro/nano shells", Eur. Phys. J. Plus., 132(12), 503. https://doi.org/10.1140/epjp/i2017-11770-7.
- Zhang, Y.W., Ding, H.X. and She, G.L. (2022), "Snap-buckling and resonance of functionally graded graphene reinforced composites curved beams resting on elastic foundations in thermal environment", J. Therm. Stresses, 45(12), 1029-1042. https://doi.org/10.1080/01495739.2022.2125137.
- Zhang, Y.W. and She, G.L. (2022), "Wave propagation and vibration of FG pipes conveying hot fluid", Steel. Compos, Struct., 42(3) 397-405. https://doi.org/10.12989/scs.2022.42.3.397.
- Zhang, Y.W. and She, G.L. (2023), "Nonlinear low-velocity impact response of graphene platelet-reinforced metal foam cylindrical shells under axial motion with geometrical imperfection", Nonlinear Dyn., 1-18. https://doi.org/10.1007/s11071-022-08186-9.
- Zhang, Y.W., She, G.L. and Ding, H.X. (2023), "Nonlinear resonance of graphene platelets reinforced metal foams plates under axial motion with geometric imperfections", Eur. J. Mech. A-Solid., 98, 104887. https://doi.org/10.1016/j.euromechsol.2022.104887.
- Zhang, Y.Y., Wang, X.Y., Zhang, X., Shen, H.M. and She, G.L. (2021), "On snap-buckling of FG-CNTRC curved nanobeams considering surface effects", Steel Compos. Struct., 38(3), 293-304. https://doi.org/10.12989/scs.2021.38.3.293.
- Zhao, J.L., Chen, X., She, G.L., Jing, Y., Bai, R.Q., Yi, J., Pu, H.Y. and Luo, J. (2022a), "Vibration characteristics of functionally graded carbon nanotube-reinforced composite double-beams in thermal environments", Steel. Compos. Struct., 43(6), 797-808. https://doi.org/10.12989/scs.2022.43.6.797.
- Zhao, J.L., She, G.L., Wu, F., Yuan, S.J., Bai, R.Q., Pu, H.Y., Wang, S.L. and Luo, J. (2022b), "Guided waves of porous FG nanoplates with four edges clamped", Adv. Nano. Res., 13(5), 465-474. https://10.12989/anr.2022.13.5.465.