과제정보
The author would like to thank the reviewers for their useful comments and suggestions.
참고문헌
- F. Abdenur, C. Bonatti, and S. Crovisier, Nonuniform hyperbolicity for C1-generic diffeomorphisms, Israel J. Math. 183 (2011), 1-60. https://doi.org/10.1007/s11856-011-0041-5
- F. Abdenur and L. J. Diaz, Pseudo-orbit shadowing in the C1 topology, Discrete Contin. Dyn. Syst. 17 (2007), no. 2, 223-245. https://doi.org/10.3934/dcds.2007.17.223
- J. Ahn, K. Lee, and M. Lee, Homoclinic classes with shadowing, J. Inequal. Appl. 2012 (2012), 97, 6 pp. https://doi.org/10.1186/1029-242X-2012-97
- N. Aoki, The set of Axiom A diffeomorphisms with no cycles, Bol. Soc. Brasil. Mat. (N.S.) 23 (1992), no. 1-2, 21-65. https://doi.org/10.1007/BF02584810
- A. Arbieto, B. Carvalho, W. Cordeiro, and D. J. Obata, On bi-Lyapunov stable homoclinic classes, Bull. Braz. Math. Soc. (N.S.) 44 (2013), no. 1, 105-127. https://doi.org/10.1007/s00574-013-0005-y
- A. Arbieto and T. Catalan, Hyperbolicity in the volume-preserving scenario, Ergodic Theory Dynam. Systems 33 (2013), no. 6, 1644-1666. https://doi.org/10.1017/etds.2012.111
- A. Arbieto, L. Senos, and T. Sodero, The specification property for flows from the robust and generic viewpoint, J. Differential Equations 253 (2012), no. 6, 1893-1909. https://doi.org/10.1016/j.jde.2012.05.022
- M. Bessa, C1-stably shadowable conservative diffeomorphisms are Anosov, Bull. Korean Math. Soc. 50 (2013), no. 5, 1495-1499. https://doi.org/10.4134/BKMS.2013.50.5.1495
- M. Bessa, M. Lee, and S. Vaz, Stable weakly shadowable volume-preserving systems are volume-hyperbolic, Acta Math. Sin. (Engl. Ser.) 30 (2014), no. 6, 1007-1020. https://doi.org/10.1007/s10114-014-3093-8
- M. Bessa, M. Lee, and X. Wen, Shadowing, expansiveness and specification for C1-conservative systems, Acta Math. Sci. Ser. B (Engl. Ed.) 35 (2015), no. 3, 583-600. https://doi.org/10.1016/S0252-9602(15)30005-9
- C. Bonatti and S. Crovisier, Recurrence et genericite, Invent. Math. 158 (2004), no. 1,33-104. https://doi.org/10.1007/s00222-004-0368-1
- C. Bonatti, L. J. Diaz, and E. R. Pujals, A C1-generic dichotomy for diffeomorphisms:weak forms of hyperbolicity or infinitely many sinks or sources, Ann. of Math. (2) 158(2003), no. 2, 355-418. https://doi.org/10.4007/annals.2003.158.355
- B. Carvalho, Hyperbolicity, transitivity and the two-sided limit shadowing property, Proc. Amer. Math. Soc. 143 (2015), no. 2, 657-666. https://doi.org/10.1090/S0002-9939-2014-12250-7
- R. M. Corless and S. Y. Pilyugin, Approximate and real trajectories for generic dynamical systems, J. Math. Anal. Appl. 189 (1995), no. 2, 409-423. https://doi.org/10.1006/jmaa.1995.1027
- S. Gan, K. Sakai, and L. Wen, C1-stably weakly shadowing homoclinic classes admit dominated splittings, Discrete Contin. Dyn. Syst. 27 (2010), no. 1, 205-216. https://doi.org/10.3934/dcds.2010.27.205
- S. Hayashi, Diffeomorphisms in F1(M) satisfy Axiom A, Ergodic Theory Dynam. Systems 12 (1992), no. 2, 233-253. https://doi.org/10.1017/S0143385700006726
- I. Kupka, Contribution a la theorie des champs generiques, Contributions to Differential Equations 2 (1963), 457-484.
- M. Lee and G. Lu, Limit weak shadowable transitive sets of C1-generic diffeomorphisms, Commun. Korean Math. Soc. 27 (2012), no. 3, 613-619. https://doi.org/10.4134/CKMS.2012.27.3.613
- K. Lee, Continuous inverse shadowing and hyperbolicity, Bull. Austral. Math. Soc. 67(2003), no. 1, 15-26. https://doi.org/10.1017/S0004972700033487
- M. Lee, C1-stable inverse shadowing chain components for generic diffeomorphisms, Commun. Korean Math. Soc. 24 (2009), no. 1, 127-144. https://doi.org/10.4134/CKMS.2009.24.1.127
- M. Lee, Stably average shadowable homoclinic classes, Nonlinear Anal. 74 (2011), no. 2,689-694. https://doi.org/10.1016/j.na.2010.09.027
- M. Lee, Average shadowing property for volume preserving diffeomorphisms, Far East J. Math. Sci. (FJMS) 64 (2012), no. 2, 261-267.
- M. Lee, Stably asymptotic average shadowing property and dominated splitting, Adv. Difference Equ. 2012 (2012), 25, 6 pp. https://doi.org/10.1186/1687-1847-2012-25
- M. Lee, Robustly chain transitive sets with orbital shadowing diffeomorphisms, Dyn. Syst. 27 (2012), no. 4, 507-514. https://doi.org/10.1080/14689367.2012.725032
- M. Lee, Usual limit shadowable homoclinic classes of generic diffeomorphisms, Adv. Difference Equ. 2012 (2012), 91, 8 pp. https://doi.org/10.1186/1687-1847-2012-91
- M. Lee, Volume-preserving diffeomorphisms with inverse shadowing, J. Inequal. Appl. 2012 (2012), 275, 9 pp. https://doi.org/10.1186/1029-242X-2012-275
- M. Lee, Orbital shadowing for C1-generic volume-preserving diffeomorphisms, Abstr. Appl. Anal. 2013 (2013), Art. ID 693032, 4 pp. https://doi.org/10.1155/2013/693032
- M. Lee, Volume preserving diffeomorphisms with weak and limit weak shadowing, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 20 (2013), no. 3, 319-325.
- M. Lee, Diffeomorphisms with robustly ergodic shadowing, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 20 (2013), no. 6, 747-753.
- M. Lee, Chain components with C1-stably orbital shadowing, Adv. Difference Equ. 2013(2013), 67, 12 pp. https://doi.org/10.1186/1687-1847-2013-67
- M. Lee, The ergodic shadowing property and homoclinic classes, J. Inequal. Appl. 2014(2014), 90, 10 pp. https://doi.org/10.1186/1029-242X-2014-90
- M. Lee, The ergodic shadowing property from the robust and generic view point, Adv. Difference Equ. 2014 (2014), 170, 7 pp. https://doi.org/10.1186/1687-1847-2014-170
- M. Lee, Volume-preserving diffeomorphisms with various limit shadowing, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 25 (2015), no. 2, 1550018, 8 pp. https://doi.org/10.1142/S0218127415500182
- M. Lee, The ergodic shadowing property for robust and generic volume-preserving diffeomorphisms, Balkan J. Geom. Appl. 20 (2015), no. 2, 49-56.
- M. Lee, The local star condition for generic transitive diffeomorphisms, Commun. Korean Math. Soc. 31 (2016), no. 2, 389-394. https://doi.org/10.4134/CKMS.2016.31.2.389
- M. Lee, The barycenter property for robust and generic diffeomorphisms, Acta Math.Sin. (Engl. Ser.) 32 (2016), no. 8, 975-981. https://doi.org/10.1007/s10114-016-5123-1
- M. Lee, A type of the shadowing properties generic view points, Axiom 7(2018), 1-7. https://doi.org/10.3390/axioms7010001
- M. Lee, Decomposition property for C1 generic diffeomorphisms, J. Chungcheong Math. Soc. 32 (2019), no. 2, 165-170. https://doi.org/10.14403/jcms.2019.32.2.165
- M. Lee, Asymptotic orbital shadowing property for diffeomorphisms, Open Math. 17 (2019), no. 1, 191-201. https://doi.org/10.1515/math-2019-0002
- M. Lee, Orbital shadowing property on chain transitive sets for generic diffeomorphisms,Acta Univ. Sapientiae Math. 12 (2020), no. 1, 146-154. https://doi.org/10.2478/ausm-2020-0009
- M. Lee, Eventual shadowing for chain transitive sets of C1 generic dynamical systems, J. Korean Math. Soc. 58 (2021), no. 5, 1059-1079. https://doi.org/10.4134/JKMS.j190083
- M. Lee, Inverse pseudo orbit tracing property for robust diffeomorphisms, Chaos Solitons Fractals 160 (2022), Paper No. 112150. https://doi.org/10.1016/j.chaos.2022.112150
- K. Lee and M. Lee, Stably inverse shadowable transitive sets and dominated splitting, Proc. Amer. Math. Soc. 140 (2012), no. 1, 217-226. https://doi.org/10.1090/S0002-9939-2011-10882-7
- K. Lee and M. Lee, Volume preserving diffeomorphisms with orbital shadowing, J. Inequal. Appl. 2013, (2013), 18, 5 pp. https://doi.org/10.1186/1029-242X-2013-18
- M. Lee and S. Lee, Generic diffeomorphisms with robustly transitive sets, Commun. Korean Math. Soc. 28 (2013), no. 3, 581-587. https://doi.org/10.4134/CKMS.2013.28.3.581
- K. Lee and M. Lee, Shadowable chain recurrence classes for generic diffeomorphisms, Taiwanese J. Math. 20 (2016), no. 2, 399-409. https://doi.org/10.11650/tjm.20.2016.5815
- K. Lee, M. Lee, and S. Lee, Transitive sets with C1 stably limit shadowing, J. Chungcheong Math. Soc. 26(2013), 45-52. https://doi.org/10.14403/JCMS.2013.26.1.045
- K. Lee, K. Moriyasu, and K. Sakai, C1-stable shadowing diffeomorphisms, Discrete Contin. Dyn. Syst. 22 (2008), no. 3, 683-697. https://doi.org/10.3934/dcds.2008.22.683
- M. Lee and J. Park, Diffeomorphisms with average and asymptotic average shadowing, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 23 (2016), no. 4, 285-294.
- M. Lee and J. Park, Expansive transitive sets for robust and generic diffeomorphisms, Dyn. Syst. 33 (2018), no. 2, 228-238. https://doi.org/10.1080/14689367.2017.1335287
- M. Lee and X. Wen, Diffeomorphisms with C1-stably average shadowing, Acta Math. Sin. (Engl. Ser.) 29 (2013), no. 1, 85-92. https://doi.org/10.1007/s10114-012-1162-4
- G. Lu, K. Lee, and M. Lee, Generic diffeomorphisms with weak limit shadowing, Adv. Difference Equ. 2013 (2013), 27, 5 pp. https://doi.org/10.1186/1687-1847-2013-27
- S. Yu. Pilyugin, Inverse shadowing by continuous methods, Discrete Contin. Dyn. Syst. 8 (2002), no. 1, 29-38. https://doi.org/10.3934/dcds.2002.8.29
- S. Yu. Pilyugin, Transversality and local inverse shadowing, Regul. Chaotic Dyn. 11 (2006), no. 2, 311-318. https://doi.org/10.1070/RD2006v011n02ABEH000354
- S. Yu. Pilyugin, A. A. Rodionova, and K. Sakai, Orbital and weak shadowing properties, Discrete Contin. Dyn. Syst. 9 (2003), no. 2, 287-308. https://doi.org/10.3934/dcds.2003.9.287
- R. Potrie, Generic bi-Lyapunov stable homoclinic classes, Nonlinearity 23 (2010), no. 7, 1631-1649. https://doi.org/10.1088/0951-7715/23/7/006
- C. Robinson, Structural stability of C1 diffeomorphisms, J. Differential Equations 22 (1976), no. 1, 28-73. https://doi.org/10.1016/0022-0396(76)90004-8
- C. Robinson, Stability theorems and hyperbolicity in dynamical systems, Rocky Mountain J. Math. 7 (1977), no. 3, 425-437. https://doi.org/10.1216/RMJ-1977-7-3-425
- K. Sakai, Pseudo-orbit tracing property and strong transversality of diffeomorphisms on closed manifolds, Osaka J. Math. 31 (1994), no. 2, 373-386. http://projecteuclid.org/euclid.ojm/1200785292
- K. Sakai, Diffeomorphisms with the average-shadowing property on two-dimensional closed manifolds, Rocky Mountain J. Math. 30 (2000), no. 3, 1129-1137. https://doi.org/10.1216/rmjm/1021477263
- K. Sakai, Diffeomorphisms with weak shadowing, Fund. Math. 168 (2001), no. 1, 57-75. https://doi.org/10.4064/fm168-1-2
- K. Sakai, C1-stably shadowable chain components, Ergodic Theory Dynam. Systems 28 (2008), no. 3, 987-1029. https://doi.org/10.1017/S0143385707000570
- K. Sakai, N. Sumi, and K. Yamamoto, Diffeomorphisms satisfying the specification property, Proc. Amer. Math. Soc. 138 (2010), no. 1, 315-321. https://doi.org/10.1090/S0002-9939-09-10085-0
- X. Tian and W. Sun, Diffeomorphisms with various C1 stable properties, Acta Math. Sci. Ser. B (Engl. Ed.) 32 (2012), no. 2, 552-558. https://doi.org/10.1016/S0252-9602(12)60037-X
- X. Wang, Hyperbolicity versus weak periodic orbits inside homoclinic classes, Ergodic Theory Dynam. Systems 38 (2018), no. 6, 2345-2400. https://doi.org/10.1017/etds.2016.122
- X. Wen, S. Gan, and L. Wen, C1-stably shadowable chain components are hyperbolic, J. Differential Equations 246 (2009), no. 1, 340-357. https://doi.org/10.1016/j.jde.2008.03.032
- D. Yang and S. Gan, Expansive homoclinic classes, Nonlinearity 22 (2009), no. 4, 729-733. https://doi.org/10.1088/0951-7715/22/4/002