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HYPERBOLIC STRUCTURE OF POINTWISE INVERSE

PSEUDO-ORBIT TRACING PROPERTY FOR C1

DIFFEOMORPHISMS

Manseob Lee

Abstract. We deal with a type of inverse pseudo-orbit tracing property
with respect to the class of continuous methods, as suggested and studied

by Pilyugin [54]. In this paper, we consider a continuous method induced

through the diffeomorphism of a compact smooth manifold, and using
the concept, we proved the following: (i) If a diffeomorphism f of a

compact smooth manifold M has the robustly pointwise inverse pseudo-
orbit tracing property, f is structurally stable. (ii) For a C1 generic

diffeomorphism f of a compact smooth manifold M , if f has the pointwise

inverse pseudo-orbit tracing property, f is structurally stable. (iii) If a
diffeomorphism f has the robustly pointwise inverse pseudo-orbit tracing

property around a transitive set Λ, then Λ is hyperbolic for f . Finally,

(iv) for C1 generically, if a diffeomorphism f has the pointwise inverse
pseudo-orbit tracing property around a locally maximal transitive set Λ,

then Λ is hyperbolic for f . In addition, we investigate cases of volume

preserving diffeomorphisms.

1. Introduction

Pseudo-orbit tracing theories deal with the structure of an orbit. Such no-
tions are extremely useful for investigating the stability theory or hyperbolic
structures, among other factors. If a diffeomorphism f of a compact smooth
manifold M has a hyperbolic system, then f has the pseudo-orbit tracing prop-
erty ([58]), and the inverse pseudo-orbit tracing property ([19]). Moreover, us-
ing the C1 perturbation property (robust), if a diffeomorphism f of a compact
smooth manifold M has the robust pseudo-orbit tracing property, it has a hy-
perbolic system ([59]), and if f has the robustly inverse pseudo-orbit tracing
property, it then has a hyperbolic system ([19, 53]). According to the results,
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many different types of tracing properties were studied in [13, 19, 26, 28, 32–
34, 36–38, 49, 53–55, 60, 61, 63]. In addition, a closed invariant set is hyperbolic
if the robust and generic viewpoints of various types of pseudo-orbit tracing
properties (see [3, 5, 15, 18, 20–25, 29–31, 39–43, 45–48, 50–52, 62, 64, 66]). Based
on the results of these papers, we also studied cases of robust and generic
diffeomorphisms of M .

Throughout this article, we assume that M is a compact smooth manifold
with a Riemannian metric d induced from the tangent bundle TM . Denote by
Diff(M) = {f : M → M : f is a diffeomorphism on M}. For any δ > 0, a
bi-sequence {xi : i ∈ Z} is the δ-pseudo-orbit of f if

d(f(xi), xi+1) < δ, ∀i ∈ Z.

For a closed f -invariant set Λ ⊂ M , a diffeomorphism f of M has the pseudo
orbit tracing property (POTP) around Λ if for every positive ε, there is a positive
constant δ such that for any δ-pseudo-orbit {xi : i ∈ Z} ⊂ Λ, there is a point
z ∈M (where z is said to be a pseudo-orbit tracing point) such that

d(f i(z), xi) < ε, ∀i ∈ Z.

Based on this concept, we introduce the inverse pseudo-orbit tracing prop-
erty, which was studied by Corless and Pilyugin [14], Lee [19], Lee and Lee
[43], and Lee [42]. In general, the pseudo-orbit tracing property means that for
any pseudo-orbit of f , a real orbit must exist, and thus the distance between
the real orbit and a pseudo-orbit remains small at all times. In addition, the
inverse pseudo-orbit tracing property means that any real orbit must exist in
a pseudo-orbit, and both orbits must remain at a small distance at all times.
Note that the inverse pseudo-orbit tracing property is a dual notion of the
pseudo-orbit tracing property.

Now, we introduce the inverse pseudo-orbit tracing property with respect to
the class of the continuous method.

Let MZ be the product space of all bi-infinite sequences with the product
topology. For any δ > 0, we will denote Φf (δ) as the set of all δ-pseudo orbits
of f . We define a δ-method as a map ϕ : M → Φf (δ)(⊂MZ) in which

ϕ(x)0 = x0 and ϕ(x)k = xk, ∀k ∈ Z,

where ϕ(x)k indicates the k-th component of the sequence ϕ(x). Then, ϕ is a
δ-pseudo orbit of f through x.

Let Td(f, δ) be the set of δ-methods ϕ, which takes a diffeomorphism g :
M → M such that (i) d(f(x), g(x)) < δ(x ∈ M) and (ii) ϕ(x)k = gk(x) for all
k ∈ Z, where d( , ) is the C1 metric.

Definition 1.1. A diffeomorphism f : M → M has the inverse pseudo-orbit
tracing property with respect to Td(f, δ) if given ε > 0, there is δ > 0 such that
for any ϕ ∈ Td(f, δ), there is y ∈M in which ϕ(y) is ε-pseudo traced by x ∈M ,
that is,

d(f i(x), ϕ(y)i) < ε, ∀i ∈ Z.
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Definition 1.2. A diffeomorphism f : M → M has the pointwise inverse
pseudo-orbit tracing property (PIPTP) with respect to Td(f, δ) if f has the
inverse pseudo-orbit tracing property with respect to Td(f, δ) at z ∈ M , that
is, if given ε > 0, there is δ > 0 such that for any ϕ ∈ Td(f, δ), there is y ∈ M
in which ϕ(y) is ε-pseudo traced by z ∈M.

Remark 1.3. Throughout this paper, a diffeomorphism f has the inverse
pseudo-orbit tracing property (or pointwise inverse pseudo-orbit tracing prop-
erty), which means that f has the inverse pseudo-orbit tracing property (or,
pointwise inverse pseudo-orbit tracing property) with respect to Td(f, δ).

Definition 1.4. A diffeomorphism f : M → M has the robustly PIPTP if
there is a C1 neighborhood U(f) of f such that for any g ∈ U(f), g has the
PIPTP.

A point p ∈ M is periodic if fk(p) = p for some k > 0, and p is hyperbolic
if Dpf

π(p) : TpM → TpM(fπ(p)(p) = p) has no eigenvalues of the norm. For a
closed f -invariant set Λ, Λ is hyperbolic if TΛM has the Df -invariant splitting
TΛM = Es ⊕ Eu and there is an L ∈ N such that

‖Dfn|Es(x)‖ ≤
1

2
and ‖Df−n|Eu(x)‖ ≤

1

2

for all x ∈ Λ and n ≥ L. If f is Anosov if Λ = M is hyperbolic.
We state that a diffeomorphism f satisfies Axiom A if Ω(f) = Per(f) and is

hyperbolic, where Ω(f) is the set of all non-wandering points of f and Per(f)
is the set of all periodic points of f . In addition, f is a strong transversality
condition if for any hyperbolic periodic points p, q ∈ Ω(f), the stable manifold
of W s(p) and the unstable manifold of Wu(q) intersect transversally, where
W s(p) = {x ∈ M : d(f i(p), f i(x)) → 0 as i → ∞} and Wu(q) = {x ∈ M :
d(f i(q), f i(x))→ 0 as i→ −∞}.

A diffeomorphism f : M → M is structurally stable if there is a C1 neigh-
borhood U(f) of f such that for any g ∈ U(f), there is a homeomorphism
h : M →M such that f ◦ h = g ◦ h.

According to Robinson [57], we can see that a diffeomorphism f is struc-
turally stable if and only if f satisfies Axiom A and the strong transversality
condition, and it is known that a diffeomorphism f is Anosov; thus, f is struc-
turally stable. In addition, f has the pseudo-orbit tracing property, and f has
the inverse pseudo-orbit tracing property with respect to the class of contin-
uous methods (see [19, 53]). Pilyugin [53] proved that if a diffeomorphism f
has the robust inverse pseudo-orbit tracing property with respect to continuous
methods induced through continuous maps or a sequence of continuous maps,
it is structurally stable. In addition, Lee [19] proved that if a diffeomorphism f
has the robustly inverse pseudo-orbit tracing property with respect to Td(f, δ),
and thus is structurally stable.

From these results, the main research topic is a study on the qualitative
theory of an orbit structure. In this research, we also study the quality of an
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orbit structure for using the pointwise inverse pseudo-orbit tracing property,
which is the main theorem.

A subset R of Diff(M) is residual if it contains the intersection of the count-
able family of open and dense sets of Diff(M). It is known that R is dense in
Diff(M).

According the concepts, Abdenur and Diáz [2] suggested a problem related
to the pseudo-orbit tracing property, that is, if a diffeomorphism f in a residual
setR of Diff(M) has the pseudo-orbit tracing property, then it has a hyperbolic
structure. Many results have been published in [3,5,13,18,20,35,39,42,45,46].
Regarding this problem, we consider the following:

Problem. For a C1 generic diffeomorphism f ∈ Diff(M), if f has the inverse
pseudo-orbit tracing property, then does it have a hyperbolic structure (e.g.,
structural stability, Axiom A)?

Regarding the above problem and C1 perturbation property, we prove the
following main theorem applied in this study:

Theorem A. Let f : M → M be a diffeomorphism. We therefore have the
following:

(a) If f has the robustly PIPTP, then f is structurally stable.
(b) For a C1 generic f , if f has the PIPTP, then f is structurally stable.

1.1. Proof of Theorem A

For a hyperbolic periodic point p of f, the dimension W s(p) is said to be the
index of p and is denoted as index(p). It should be noted that TpW

s(p) = Es(p)
and dimW s(p) = dimEs(p).

Recall that if a periodic point p with a periodic π(p) is hyperbolic, then
there is a C1 neighborhood U(f) of f and a neighborhood U of p such that for
any g ∈ U(f), there exists a unique pg =

⋂
n∈Z g

n(U) such that gπ(p)(p) = p
and pg is hyperbolic for g.

Lemma 1.5. If a periodic point p of f is non-hyperbolic, then there is a dif-
feomorphism g C1 close to f such that g has two distinct hyperbolic periodic
points q, r with index(q) 6= index(r).

Proof. See [39, Lemma 2.6]. �

Lemma 1.6 ([54, Theorem 1]). The following statements are equivalent:

(a) A diffeomorphism f has the PIPTP;
(b) Wu(p) and W s(q) are transverse at x for hyperbolic points p, q ∈ P (f).

A diffeomorphism f : M →M is a star if there is a C1 neighborhood U(f) of
f such that every periodic point of Per(g) is hyperbolic for any diffeomorphism
g ∈ U(f), where Per(g) is the set of periodic points of g.

Lemma 1.7. If a diffeomorphism f has the robustly PIPTP, then f is a star.
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Proof. By contradiction, suppose that f is not a star. Then, there is a dif-
feomorphism g C1 close to f and a periodic point p of g such that p is not
hyperbolic for g. By Lemma 1.5, there is a diffeomorphism g1 C

1 close to g
(in addition, C1 is close to f such that g1 has two distinct hyperbolic periodic
points q and r with index(q) 6= index(r). Because f has the robustly PIPTP, by
Lemma 1.6, the manifolds W s(q) and Wu(r) intersect transversally, and Wu(q)
and W s(r) intersect transversally. This means that index(q) = index(r). This
is a contradiction. Thus, if a diffeomorphism f has the robustly PIPTP, then
f is a star. �

Proof of Theorem A(a). Based on Aoki [4] and Hyashi [16], if a diffeomorphism
f is a star, then f is Axiom A and has no cycles. Thus, according to Lemma
1.7, if a diffeomorphism f has the robustly PIPTP, then f is Axiom A and has
no cycles. To prove Theorem A, it is sufficient to show a strong transversality
condition. Because f has the PIPTP, based on Lemma 1.6, we see that for
any two hyperbolic periodic points p and q in the non-wandering set Ω(f), the
manifolds W s(p) and Wu(q) intersect transversally. Thus, if a diffeomorphism
f has the robustly PIPTP, then it is structurally stable. �

To prove Theorem A(b), we need the following lemma.

Lemma 1.8. There is a residual set R of Diff(M) such that for any f ∈ R,
we have the following:

(a) f is Kupka-Smale, that is, every periodic point of f is hyperbolic and
the manifolds W s(p) and Wu(q) are a transverse intersection for any
two distinct p, q ∈ Per(f) (see [17]).

(b) if there is a diffeomorphism g C1 close to f such that g has two hyper-
bolic periodic points p and q with index(p) 6= index(q), then f has two
hyperbolic periodic points pf and qf with index(pf ) 6= index(qf ) (see
[45]).

Proof of Theorem A(b). Let f ∈ R be the PIPTP. By Lemma 1.6, to prove
the structural stability, it is sufficient to show that f satisfies Axiom A. If a
diffeomorphism f is a star, then f satisfies Axiom A by Aoki [4] and Hayashi
[16]. Thus, we show that f is a star. By contradiction, suppose that f is
not a star. Then, there is a diffeomorphism g C1 close to f and a periodic
point p of g such that p is not hyperbolic for g. By Lemma 1.5, there is a
diffeomorphism h C1 close to g (in addition, C1 is close to f) such that h
has two distinct hyperbolic periodic points p and q with index(p) 6= index(q).
Because f ∈ R, f has two distinct hyperbolic periodic points pf and qf with
index(pf ) 6= index(qf ). Because f has the PIPTP, by Lemma 1.6, the manifolds
W s(pf ) and Wu(qf ) intersect transversally. This is a contradiction. Thus, if
f ∈ R has the PIPTP, then f is structurally stable. �
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2. Pointwise inverse pseudo-orbit tracing property around a closed
invariant set Λ

For a closed f -invariant set Λ of subset M , Λ is locally maximal if there is a
neighborhood U of Λ such that Λ = Uf =

⋂
n∈Z f

n(U).

Definition 2.1. We state that a diffeomorphism f : M →M has the robustly
PIPTP around Λ if (i) Λ is locally maximal, and (ii) there is a C1 neighborhood
U(f) of f such that for any g ∈ U(f), g has the PIPTP around Ug, where
Ug =

⋂
n∈Z g

n(U) is the continuation of Λ.

For a closed f -invariant set Λ, we introduce closed f invariant sets, which
are a chain class C(p), a homoclinic class H(p), and a transitive set Λ.

For any δ > 0 and any points x, y ∈M , we state that x has a chain relation
with y (which is written as x >C y) if x0 = x, xn = y, and d(f(xi), xi+1) < δ
for all 0 ≤ i ≤ n.

For a hyperbolic periodic point p of f , we denote C(p) = {x ∈ M : x >C p
and p >C x}, which is said to be a chain class.

We state that the Λ subset of M is transitive if the closure of the orbit of x
is Λ, for some x ∈ Λ. Equivalently, the omega limit set of x (written as ω(x))
is Λ. For this notion, if Λ = M , then we state that f is transitive.

For a hyperbolic periodic point q, of f , we write q ∼ p if W s(p) and Wu(q),
and Wu(p) and W s(q), intersect transversally, that is, W s(p) t Wu(q) 6= ∅
and Wu(p) t W s(q) 6= ∅. Denote the homoclinic class H(p) as the closure
of {q ∈ Per(f) : q ∼ p}, which is a closed, f -invariant, and transitive set.
Moreover, it is known that H(p) ⊂ C(p).

For a robust property of a diffeomorphism, Lee et al. [48] proved that if a
diffeomorphism f has the robust pseudo-orbit tracing property around C(p),
then C(p) is hyperbolic. A closed f -invariant set Λ ⊂ M , Λ, has a dominated
splitting if the tangent bundle over Λ splits TΛM = E⊕F , which isDf -invariant
such that C > 0 and λ ∈ (0, 1) satisfying

‖DfnE(x)‖‖Df
−n|F (fn(x))‖ ≤ Cλn

for all x ∈ Λ and n ≥ 0. It is clear that if Λ is hyperbolic, then Λ has a
dominated splitting.

Lee and Lee [43] proved that if a diffeomorphism f has the robust inverse
pseudo-orbit tracing property around a transitive set Λ, then Λ has dominated
splitting. Recently, Lee [42] proved that if a diffeomorphism f has the robustly
inverse pseudo-orbit tracing property around Λ, then it is hyperbolic. This
result is a generalization of the results in [43].

For a C1 generic diffeomorphism f : M → M , Lee and Lee [46] proved
that if f has the pseudo-orbit tracing property around C(p), then C(p) is
hyperbolic, Abdenur and Diáz [2] proved that if f has the pseudo-orbit tracing
property around a locally maximal transitive set Λ, then Λ is hyperbolic for
f . In addition, Lee [20] proved that if a C1 generic diffeomorphism f has
the robustly inverse pseudo-orbit tracing property around C(p), then C(p) is
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hyperbolic. However, we do not know whether a C1 generic diffeomorphism f
having the inverse pseudo-orbit tracing property around a closed f -invariant
set is hyperbolic?

The following is the result of a C1 generic diffeomorphism f , which has the
pointwise inverse pseudo-orbit tracing property around a closed f -invariant set.

Theorem B. Let Λ ⊂M be a transitive set of f . We thus have the following:

(a) If a diffeomorphism f has the robustly PIPTP around Λ, then Λ is
hyperbolic for f .

(b) For a C1 generic diffeomorphism f , if f has the PIPTP around a locally
maximal Λ, then Λ is hyperbolic for f .

2.1. Proof of Theorem B

Lemma 2.2. Let Λ ⊂ M be a closed f -invariant set and U(f) and U be as
defined in 2.1. If a periodic point p of f in Λ is non-hyperbolic, then there is a
diffeomorphism g ∈ U(f) such that g has two distinct hyperbolic periodic points
q, r ∈ Ug with index(q) 6= index(r).

Proof. See [63, Lemma 2.4]. �

From the results of [41, 42], for a transitive set Λ, if every periodic point in
Λ is hyperbolic and Λ is locally maximal, then Λ is hyperbolic.

To prove Theorem B(a), it is sufficient to show that every periodic point in
Λ is hyperbolic.

Proof of Theorem B(a). Let U(f) and U be as defined in Definition 2.1. By
contrast, suppose that there is a periodic point p of f in Λ such that p is not
hyperbolic. From Lemma 2.2, we have a diffeomorphism g ∈ U(f) such that g
has two distinct hyperbolic periodic points q, r ∈ Ug with index(q) 6= index(r).
Because g has the PIPTP around Ug, by Lemma 1.6, we see that index(q) =
index(r). This is a contradiction. Thus, if f has the robustly PIPTP around Λ,
then every periodic point in Λ is hyperbolic. Because Λ is locally maximal in
U , by [50, Lemma 2.3], we see that Λ = Λ ∩ Per(f). Then, as in the previous
arguments, according to the results of Lee [41,42], Λ is hyperbolic. �

Note that if a transitive set Λ is locally maximal, it guarantees the existence
of a periodic point in Λ by Pugh’s closing lemma.

Lemma 2.3. There is a residual subset G1 of Diff(M) such that for any f ∈
G1, if a closed f -invariant set Λ is transitive and it is locally maximal, then
Λ = Λ ∩ Per(f).

Proof. Let G1 be as in [1], and let f ∈ G1. Because Λ is locally maximal,

Λ is a homoclinic class H(p). Because H(p) ∩ Per(f) = H(p), we see that

Λ = Λ ∩ Per(f). �

The following is a version of the diffeomorphisms of [7, Lemma 5.1].
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Lemma 2.4. There is a residual subset G2 of Diff(M) such that, for any f ∈
G2, if for any ε > 0, there exists a diffeomorphism g such that g has two distinct
hyperbolic periodic points p and q in U with index(p) 6= index(q), then f has two
distinct hyperbolic periodic points pf and qf in U with index(pf ) 6= index(qf ).

Lemma 2.5. There is a residual subset G3 of Diff(M) such that for any f ∈ G3,
if f has the PIPTP around Λ, then every periodic point in Λ is hyperbolic.

Proof. Let G0 be the same as in [35, Lemma 2.4], and let f ∈ G3 = R ∩ G0 ∩
G1 ∩ G2 have the PIPTP. By contrast, suppose that there is a periodic point p
in Λ such that p is non-hyperbolic. By Lemmas 2.2 and 2.4, f has two distinct
hyperbolic periodic points q and r in Λ with index(q) 6= index(r). Because f
has the PIPTP around Λ, by Lemma 1.6, we can see that index(q) = index(r).
This is a contradiction. Thus, if f ∈ G4 has the PIPTP, then every periodic
point in Λ is hyperbolic. �

Note that every periodic point in Λ is hyperbolic, and if Λ is locally maximal,
there is a C1 neighborhood U(f) of f such that for any g ∈ U(f), every periodic
point is in Ug =

⋂
n∈Z g

n(U)(⊂ U) and is hyperbolic. Thus, we can see that f

satisfies the local star condition on Λ, that is, there is a C1 neighborhood U(f)
of f and a neighborhood U of Λ such that for any g ∈ U(f), every periodic
point in Ug =

⋂
n∈Z g

n(U) is hyperbolic.

Proof of Theorem B(b). Let G4 be as in Lemma [35, Lemma 2.8] and let f ∈
G = G3 ∩ G4 have the PIPTP around Λ. By Lemma 2.5, every periodic point
in Λ is hyperbolic; thus, f satisfies the local star condition on Λ. Then, as in
the proof of [35, Theorem 1.1], Λ is hyperbolic. �

From now, we consider the closed f -invariant set, which is the chain class
C(p). To prove this, we need the results of a C1 generic diffeomorphism f :
M →M .

Lemma 2.6. There is a residual subset S of Diff(M) such that given f ∈ S,
the following hold:

(a) For any ρ > 0, if for a C1 neighborhood U(f) of f , there is a diffeo-
morphism g ∈ U(f) such that g has a ρ-simply periodic curve Ipg with
the two endpoints of Ipg being homo clinically related with pg, then f
has a 2ρ-simple periodic curve Jp such that the two endpoints of Jp
are homo clinically related to p (see [67]),

(b) A homoclinic class H(p) having the hyperbolic periodic point p is a
chain class C(p) having the hyperbolic periodic point p (see [11]).

(c) A homoclinic class H(p) is not hyperbolic if and only if H(p) has a
weak hyperbolic periodic point (see [65]).

Theorem 2.7. For a C1 generic diffeomorphism f : M → M , if f has a
PIPTP around a chain class C(p), then C(p) is hyperbolic.
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Proof. Let C = S∩G, and let f ∈ C have the PIPTP around C(p). By contrast,
suppose that C(p) is not hyperbolic. Because f ∈ S, C(p) = H(p), and thus
H(p) has a weak hyperbolic periodic point q with q ∼ p. Then, as in the proof
of [67, Proposition A], f has a ρ-simple periodic curve Jp in C(p) with the two
endpoints x and y in Jp being homoclinically related to p. Then, we can see
that the manifolds W s(x) and Wu(y), or Wu(x) and W s(y), do not intersect
transversally. Because f has the PIPTP around C(p), this is a contradiction.
Thus, if f ∈ C has the PIPTP around C(p), then H(p) is hyperbolic. �

For a closed f -invariant Λ subset M , we state that Λ is Lyapunov stable if for
any neighborhood U of Λ, there is a neighborhood V of Λ such that fn(V ) ⊂ U
for all n ≥ 0, and is bi-Lyapunov stable if it is Lyapunov stable for f and f−1.

Potrie [56] proved that for a C1 generic diffeomorphism f : M → M , if
homoclinic class H(p) is bi-Lyapunov stable, then H(p) has a dominated split-
ting.

Lemma 2.8. There is a residual subset B of Diff(M) such that given f ∈ B,
if H(p) is Lyapunov stable for f then there exists U(f) a C1 neighborhood of
f such that H(pg) is Lyapunov stable for every g ∈ U(f) (see [56]).

For a C1 generic diffeomorphism f : M → M , if every hyperbolic periodic
point in H(p) has the same index, then H(p) is hyperbolic, and thus, for a C1

generic diffeomorphism f : M →M , if a homoclinic class H(p) is bi-Lyapunov
stable and f has the pseudo-orbit tracing property around H(p), then H(p) is
hyperbolic. From these results, we have the following.

Corollary 2.9. For a C1 generic diffeomorphism f : M → M , if f has the
PIPTP around a bi-Lyapunov stable homoclinic class H(p), then H(p) is hy-
perbolic.

Proof. Let f ∈ C∩B have a PIPTP aroundH(p), and letH(p) be a bi-Lyapunov
stable. Then, as in the proof of [5, Theorem1.2], a bi-Lyapunov stable H(p) is
hyperbolic if H(p) is homogeneous. Thus, we show that if a homoclinic class
H(p) is bi-Lyapunov stable, then H(p) is homogeneous. Because f has the
PIPTP around H(p) by Lemma 1.6, every periodic point in H(p) has the same
index, that is, H(p) is homogeneous, and thus, H(p) is hyperbolic. �

3. Volume preserving diffeomorphisms with pointwise inverse
pseudo-orbit tracing property

We assume that M is a compact smooth Riemannian manifold with a volume
form µ. Let V(M) denote the space of volume-preserving diffeomorphisms of
M . Because f is a volume-preserving diffeomorphism, it is known that the
non-wandering set Ω(f) is the whole space M .

For a robust property of the volume-preserving diffeomorphism of M , Bessa
[8] and Lee [27] proved that if f ∈ V(M) has the robustly pseudo-orbit tracing
property or the inverse pseudo-orbit tracing property, then f is Anosov. For
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a general type of the pseudo-orbit tracing property, if f ∈ V(M) robustly has
various types of pseudo-tracing properties, then f is Anosov (see [8, 9, 27, 30,
36,37,39,44]).

For a C1 generic volume-preserving diffeomorphism of M , Bonatti and Cro-
visier [11] showed that a C1 generic volume-preserving diffeomorphism f of M
is transitive. Moreover, it is a homoclinic class H(p). In Bessa, Lee, and Wen
[10], if a C1 generic f ∈ V(M) has a pseudo-orbit tracing property, then f is
Anosov. In addition, if a C1 generic f ∈ V(M) has various types of pseudo-orbit
tracing properties, then f is Anosov (see [10, 27, 29, 37]). From the previous
results, we prove the following:

Theorem C. Let f ∈ V(M). We therefore have the following:

(a) If f has the robustly PIPTP, then f is Anosov.
(b) For a C1 generic f , if f has the PIPTP, then f is Anosov.

3.1. Proof of Theorem C

By [6, Theorem 1.1], if a volume-preserving diffeomorphism f : M → M is
a star, then f is Anosov. To prove that a volume-preserving diffeomorphism
f : M → M is a star, we use the C1 perturbation lemma, which is called the
Franks’ lemma of the version of volume-preserving diffeomorphisms (see [12]).

Lemma 3.1. If a periodic point p of f is non-hyperbolic, then there is a vol-
ume preserving diffeomorphism g C1 close to f such that g has two hyperbolic
periodic points q and r with index(q) 6= index(r).

Proof. See [10, Lemma 2.5]. �

Proof of Theorem C(a). Since f has the robustly PIPTP, as [6, Theorem 1.1],
to prove, it is sufficient to show that f is a star. By contrast, suppose that f
is not a star. Then, there is a volume-preserving diffeomorphism g C1 close to
f and a periodic point p of g, such that p is non-hyperbolic for g. By Lemma
3.1, there is a volume-preserving diffeomorphism g1 C

1 close to g (in addition,
C1 close to f) such that g1 has two distinct hyperbolic periodic points q and r
with index(q) 6= index(r). Because f has the PIPTP, based on Lemma 1.6, we
can see that index(q) = index(r). This is a contradiction. �

Lemma 3.2. There is a residual subset N of V(M) such that for any f ∈ N ,
if a periodic point p of f is non-hyperbolic, then f has two distinct hyperbolic
periodic points q and r with index(q) 6= index(r).

Proof. See [10, Proposition2.4]. �

Proof of Theorem C(b). Let f ∈ N have the PIPTP. Suppose that there is a
periodic point p of f such that p is not hyperbolic. By Lemma 3.2, f has two
distinct hyperbolic periodic points q and r with index(q) 6= index(r). Because
f has the PIPTP, this is a contradiction by Lemma 1.6. Thus, every periodic
point f is hyperbolic if f ∈ N has the PIPTP. According to the hyperbolicity,
we can see that f is a star, and thus f is Anosov. �
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