DOI QR코드

DOI QR Code

ON LIGHTLIKE HYPERSURFACES OF COSYMPLECTIC SPACE FORM

  • Ejaz Sabir Lone (Department of Mathematics School of Chemical Engineering and Physical Sciences Lovely Professional University) ;
  • Pankaj Pandey (Department of Mathematics School of Chemical Engineering and Physical Sciences Lovely Professional University)
  • Received : 2022.01.20
  • Accepted : 2022.06.24
  • Published : 2023.01.31

Abstract

The main purpose of this paper is to study the lightlike hypersurface (M, $\overline{g}$) of cosymplectic space form $\overline{M}$(c). In this paper, we computed the Gauss and Codazzi formulae of (M, $\overline{g}$) of cosymplectic manifold ($\overline{M}$, g). We showed that we can't obtain screen semi-invariant lightlike hypersurface (SCI-LH) of $\overline{M}$(c) with parallel second fundamental form h, parallel screen distribution and c ≠ 0. We showed that if second fundamental form h and local second fundamental form B are parallel, then (M, $\overline{g}$) is totally geodesic. Finally we showed that if (M, $\overline{g}$) is umbilical, then cosymplectic manifold ($\overline{M}$, g) is flat.

Keywords

Acknowledgement

Authors would like to express their gratitude to editors and referees for their valuable suggestions for improving quality of this research paper.

References

  1. N. Aktan, On non-existence of lightlike hypersurfaces of indefinite Kenmotsu space form, Turkish J. Math. 32 (2008), no. 2, 127-139.
  2. N. Aktan, On non-existence of lightlike hypersurfaces of indefinite Sasakian space form, Int. J. Math. Stat. 3 (2008), A08, 12-21.
  3. C. Atindogbe, J.-P. Ezin, and J. Tossa, Lightlike Einstein hypersurfaces in Lorentzian manifolds with constant curvature, Kodai Math. J. 29 (2006), no. 1, 58-71. https://doi.org/10.2996/kmj/1143122387
  4. D. E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Mathematics, Vol. 509, Springer-Verlag, Berlin, 1976.
  5. A. Cabras, S. Ianus, and Gh. Pitis, Extrinsic spheres and parallel submanifolds in cosymplectic manifolds, Math. J. Toyama Univ. 17 (1994), 31-53.
  6. K. L. Duggal, Foliations of lightlike hypersurfaces and their physical interpretation, Cent. Eur. J. Math. 10 (2012), no. 5, 1789-1800. https://doi.org/10.2478/s11533-012-0067-x
  7. K. L. Duggal and A. Bejancu, Lightlike submanifolds of semi-Riemannian manifolds and applications, Mathematics and its Applications, 364, Kluwer Academic Publishers Group, Dordrecht, 1996. https://doi.org/10.1007/978-94-017-2089-2
  8. K. L. Duggal and B. Sahin, Differential geometry of lightlike submanifolds, Frontiers in Mathematics, Birkhauser Verlag, Basel, 2010. https://doi.org/10.1007/978-3-0346-0251-8
  9. E. Kilic and O. Bahadir, Lightlike hypersurfaces of a semi-Riemannian product manifold and quarter-symmetric nonmetric connections, Int. J. Math. Math. Sci. 2012 (2012), Art. ID 178390, 17 pp. https://doi.org/10.1155/2012/178390
  10. P. Libermann, Sur les automorphismes infinitaesimaux des structures symplectiques et des structures de contact, in Colloque Geom. Diff. Globale (Bruxelles, 1958), 37-59, Centre Belge Rech. Math., Louvain, 1959.
  11. F. Massamba, Lightlike hypersurfaces of indefinite Sasakian manifolds with parallel symmetric bilinear forms, Differ. Geom. Dyn. Syst. 10 (2008), 226-234.
  12. S. Y. Perktas, E. Kilic, and B.E. Acet, Lightlike hypersurfaces of a Para-Sasakian space form, Gulf J. Math. 2 (2014), 7-8. https://doi.org/10.56947/gjom.v2i2.194
  13. Mohd. Shoeb, Mohd. H. Shahid, and A. Sharfuddin, On submanifolds of a cosymplectic manifold, Soochow J. Math. 27 (2001), no. 2, 161-174.