Acknowledgement
The authors would like to thank the anonymous referees for their valuable comments and suggestions to improve the quality of the paper.
References
- A. L. A. de Araujo, L. F. O. Faria, and J. L. F. Melo Gurjao, Positive solutions of nonlinear elliptic equations involving supercritical Sobolev exponents without Ambrosetti and Rabinowitz condition, Calc. Var. Partial Differential Equations 59 (2020), no. 5, Paper No. 147, 18 pp. https://doi.org/10.1007/s00526-020-01800-x
- W. Beckner, On the Grushin operator and hyperbolic symmetry, Proc. Amer. Math. Soc. 129 (2001), no. 4, 1233-1246. https://doi.org/10.1090/S0002-9939-00-05630-6
- H. Brezis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1983), no. 3, 486-490. https://doi.org/10.2307/2044999
- H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), no. 4, 437-477. https://doi.org/10.1002/cpa.3160360405
- N. Chen, Z. Huang, and X. Liu, Biharmonic equations with totally characteristic degeneracy, Nonlinear Anal. 203 (2021), Paper No. 112156, 20 pp. https://doi.org/10.1016/j.na.2020.112156
- V. V. Grusin, A certain class of hypoelliptic operators, Mat. Sb. (N.S.) 83 (125) (1970), 456-473.
- Q. He and Z. Lv, Existence and nonexistence of nontrivial solutions for critical biharmonic equations, J. Math. Anal. Appl. 495 (2021), no. 1, Paper No. 124713, 30 pp. https://doi.org/10.1016/j.jmaa.2020.124713
- A. E. Kogoj and E. Lanconelli, On semilinear ∆λ-Laplace equation, Nonlinear Anal. 75 (2012), no. 12, 4637-4649. https://doi.org/10.1016/j.na.2011.10.007
- G. Lu and Y. Shen, Existence of solutions to fractional p-Laplacian systems with homogeneous nonlinearities of critical Sobolev growth, Adv. Nonlinear Stud. 20 (2020), no. 3, 579-597. https://doi.org/10.1515/ans-2020-2098
- D. T. Luyen and N. M. Tri, Existence of solutions to boundary-value problems for similinear ∆γ differential equations, Math. Notes 97 (2015), no. 1-2, 73-84. https://doi.org/10.1134/S0001434615010101
- D. T. Luyen and N. M. Tri, On the existence of multiple solutions to boundary value problems for semilinear elliptic degenerate operators, Complex Var. Elliptic Equ. 64 (2019), no. 6, 1050-1066. https://doi.org/10.1080/17476933.2018.1498086
- D. T. Luyen and N. M. Tri, Infinitely many solutions for a class of perturbed degenerate elliptic equations involving the Grushin operator, Complex Var. Elliptic Equ. 65 (2020), no. 12, 2135-2150. https://doi.org/10.1080/17476933.2020.1730824
- D. D. Monticelli and K. R. Payne, Maximum principles for weak solutions of degenerate elliptic equations with a uniformly elliptic direction, J. Differential Equations 247 (2009), no. 7, 1993-2026. https://doi.org/10.1016/j.jde.2009.06.024
- D. R. Moreira and E. V. O. Teixeira, Weak convergence under nonlinearities, An. Acad. Brasil. Cienc. 75 (2003), no. 1, 9-19. https://doi.org/10.1590/S0001-37652003000100002
- P. T. Thuy and N. M. Tri, Nontrivial solutions to boundary value problems for semilinear strongly degenerate elliptic differential equations, NoDEA Nonlinear Differential Equations Appl. 19 (2012), no. 3, 279-298. https://doi.org/10.1007/s00030-011-0128-z
- N. M. Tri, Critical Sobolev exponent for degenerate elliptic operators, Acta Math. Vietnam. 23 (1998), no. 1, 83-94.
- N. M. Tri, Semilinear Degenerate Elliptic Differential Equations, Local and global theories, Lambert Academic Publishing, 2010, 271pp.