DOI QR코드

DOI QR Code

EXISTENCE THEOREMS FOR CRITICAL DEGENERATE EQUATIONS INVOLVING THE GRUSHIN OPERATORS

  • Huong Thi Thu Nguyen (School of Applied Mathematics and Informatics Hanoi University of Science and Technology) ;
  • Tri Minh Nguyen (Institute of Mathematics Vietnam Academy of Science and Technology)
  • Received : 2022.02.05
  • Accepted : 2022.04.22
  • Published : 2023.01.31

Abstract

In this paper we prove the existence of nontrivial weak solutions to the boundary value problem -G1u = u3 + f(x, y, u) in Ω, u ≥ 0 in Ω, u = 0 on ∂Ω, where Ω is a bounded domain with smooth boundary in ℝ3, G1 is a Grushin type operator, and f(x, y, u) is a lower order perturbation of u3 with f(x, y, 0) = 0. The nonlinearity involved is of critical exponent, which differs from the existing results in [11, 12].

Keywords

Acknowledgement

The authors would like to thank the anonymous referees for their valuable comments and suggestions to improve the quality of the paper.

References

  1. A. L. A. de Araujo, L. F. O. Faria, and J. L. F. Melo Gurjao, Positive solutions of nonlinear elliptic equations involving supercritical Sobolev exponents without Ambrosetti and Rabinowitz condition, Calc. Var. Partial Differential Equations 59 (2020), no. 5, Paper No. 147, 18 pp. https://doi.org/10.1007/s00526-020-01800-x 
  2. W. Beckner, On the Grushin operator and hyperbolic symmetry, Proc. Amer. Math. Soc. 129 (2001), no. 4, 1233-1246. https://doi.org/10.1090/S0002-9939-00-05630-6 
  3. H. Brezis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1983), no. 3, 486-490. https://doi.org/10.2307/2044999 
  4. H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), no. 4, 437-477. https://doi.org/10.1002/cpa.3160360405 
  5. N. Chen, Z. Huang, and X. Liu, Biharmonic equations with totally characteristic degeneracy, Nonlinear Anal. 203 (2021), Paper No. 112156, 20 pp. https://doi.org/10.1016/j.na.2020.112156 
  6. V. V. Grusin, A certain class of hypoelliptic operators, Mat. Sb. (N.S.) 83 (125) (1970), 456-473. 
  7. Q. He and Z. Lv, Existence and nonexistence of nontrivial solutions for critical biharmonic equations, J. Math. Anal. Appl. 495 (2021), no. 1, Paper No. 124713, 30 pp. https://doi.org/10.1016/j.jmaa.2020.124713 
  8. A. E. Kogoj and E. Lanconelli, On semilinear ∆λ-Laplace equation, Nonlinear Anal. 75 (2012), no. 12, 4637-4649. https://doi.org/10.1016/j.na.2011.10.007 
  9. G. Lu and Y. Shen, Existence of solutions to fractional p-Laplacian systems with homogeneous nonlinearities of critical Sobolev growth, Adv. Nonlinear Stud. 20 (2020), no. 3, 579-597. https://doi.org/10.1515/ans-2020-2098 
  10. D. T. Luyen and N. M. Tri, Existence of solutions to boundary-value problems for similinear ∆γ differential equations, Math. Notes 97 (2015), no. 1-2, 73-84. https://doi.org/10.1134/S0001434615010101 
  11. D. T. Luyen and N. M. Tri, On the existence of multiple solutions to boundary value problems for semilinear elliptic degenerate operators, Complex Var. Elliptic Equ. 64 (2019), no. 6, 1050-1066. https://doi.org/10.1080/17476933.2018.1498086 
  12. D. T. Luyen and N. M. Tri, Infinitely many solutions for a class of perturbed degenerate elliptic equations involving the Grushin operator, Complex Var. Elliptic Equ. 65 (2020), no. 12, 2135-2150. https://doi.org/10.1080/17476933.2020.1730824 
  13. D. D. Monticelli and K. R. Payne, Maximum principles for weak solutions of degenerate elliptic equations with a uniformly elliptic direction, J. Differential Equations 247 (2009), no. 7, 1993-2026. https://doi.org/10.1016/j.jde.2009.06.024 
  14. D. R. Moreira and E. V. O. Teixeira, Weak convergence under nonlinearities, An. Acad. Brasil. Cienc. 75 (2003), no. 1, 9-19. https://doi.org/10.1590/S0001-37652003000100002 
  15. P. T. Thuy and N. M. Tri, Nontrivial solutions to boundary value problems for semilinear strongly degenerate elliptic differential equations, NoDEA Nonlinear Differential Equations Appl. 19 (2012), no. 3, 279-298. https://doi.org/10.1007/s00030-011-0128-z 
  16. N. M. Tri, Critical Sobolev exponent for degenerate elliptic operators, Acta Math. Vietnam. 23 (1998), no. 1, 83-94. 
  17. N. M. Tri, Semilinear Degenerate Elliptic Differential Equations, Local and global theories, Lambert Academic Publishing, 2010, 271pp.