DOI QR코드

DOI QR Code

A QUESTION ABOUT MAXIMAL NON φ-CHAINED SUBRINGS

  • Atul Gaur (Department of Mathematics University of Delhi) ;
  • Rahul Kumar (Department of Mathematics Birla Institute of Technology and Science Pilani)
  • Received : 2021.08.09
  • Accepted : 2022.06.15
  • Published : 2023.01.31

Abstract

Let 𝓗0 be the set of rings R such that Nil(R) = Z(R) is a divided prime ideal of R. The concept of maximal non φ-chained subrings is a generalization of maximal non valuation subrings from domains to rings in 𝓗0. This generalization was introduced in [20] where the authors proved that if R ∈ 𝓗0 is an integrally closed ring with finite Krull dimension, then R is a maximal non φ-chained subring of T(R) if and only if R is not local and |[R, T(R)]| = dim(R) + 3. This motivates us to investigate the other natural numbers n for which R is a maximal non φ-chained subring of some overring S. The existence of such an overring S of R is shown for 3 ≤ n ≤ 6, and no such overring exists for n = 7.

Keywords

References

  1. D. F. Anderson and A. Badawi, On φ-Prufer rings and φ-Bezout rings, Houston J. Math. 30 (2004), no. 2, 331-343.
  2. D. F. Anderson and A. Badawi, On φ-Dedekind rings and φ-Krull rings, Houston J. Math. 31 (2005), no. 4, 1007-1022.
  3. D. D. Anderson and M. Winders, Idealization of a module, J. Commut. Algebra 1 (2009), no. 1, 3-56. https://doi.org/10.1216/JCA-2009-1-1-3
  4. A. Ayache, D. E. Dobbs, and O. Echi, On maximal non-ACCP subrings, J. Algebra Appl. 6 (2007), no. 5, 873-894. https://doi.org/10.1142/S0219498807002545
  5. A. Ayache and N. Jarboui, Maximal non-Noetherian subrings of a domain, J. Algebra 248 (2002), no. 2, 806-823. https://doi.org/10.1006/jabr.2001.9045
  6. A. Ayache and N. Jarboui, An algorithm for computing the number of intermediary rings in normal pairs, J. Pure Appl. Algebra 212 (2008), no. 1, 140-146. https://doi.org/10.1016/j.jpaa.2007.05.016
  7. A. Badawi, On divided commutative rings, Comm. Algebra 27 (1999), no. 3, 1465-1474. https://doi.org/10.1080/00927879908826507
  8. A. Badawi, On φ-pseudo-valuation rings, in Advances in commutative ring theory (Fez, 1997), 101-110, Lecture Notes in Pure and Appl. Math., 205, Dekker, New York, 1999.
  9. A. Badawi, On φ-pseudo-valuation rings. II, Houston J. Math. 26 (2000), no. 3, 473-480.
  10. A. Badawi, On φ-chained rings and φ-pseudo-valuation rings, Houston J. Math. 27 (2001), no. 4, 725-736.
  11. A. Badawi, On divided rings and φ-pseudo-valuation rings, Commutative rings, 5-14, Nova Sci. Publ., Hauppauge, NY, 2002.
  12. A. Badawi, On nonnil-Noetherian rings, Comm. Algebra 31 (2003), no. 4, 1669-1677. https://doi.org/10.1081/AGB-120018502
  13. A. Badawi, Factoring nonnil ideals into prime and invertible ideals, Bull. London Math. Soc. 37 (2005), no. 5, 665-672. https://doi.org/10.1112/S0024609305004509
  14. A. Badawi and A. Jaballah, Some finiteness conditions on the set of overrings of a φ-ring, Houston J. Math. 34 (2008), no. 2, 397-408.
  15. A. Badawi and T. G. Lucas, Rings with prime nilradical, in Arithmetical properties of commutative rings and monoids, 198-212, Lect. Notes Pure Appl. Math., 241, Chapman & Hall/CRC, Boca Raton, FL, 2005.
  16. A. Badawi and T. G. Lucas, On φ-Mori rings, Houston J. Math. 32 (2006), no. 1, 1-32.
  17. M. Ben Nasr and N. Jarboui, Maximal non-Jaffard subrings of a field, Publ. Mat. 44 (2000), no. 1, 157-175. https://doi.org/10.5565/PUBLMAT_44100_05
  18. M. Ben Nasr and N. Jarboui, On maximal non-valuation subrings, Houston J. Math. 37 (2011), no. 1, 47-59.
  19. D. E. Dobbs, On treed overrings and going-down domains, Rend. Mat. Appl. (7) 7 (1987), no. 3-4, 317-322.
  20. A. Gaur and R. Kumar, Maximal non φ-chained rings and maximal non chained rings, Results Math. 74 (2019), no. 3, Paper No. 121, 18 pp. https://doi.org/10.1007/s00025-019-1043-6
  21. M. Griffin, Prufer rings with zero divisors, J. Reine Angew. Math. 239(240) (1969), 55-67. https://doi.org/10.1515/crll.1969.239-240.55
  22. N. Jarboui, A question about maximal non-valuation subrings, Ric. Mat. 58 (2009), no. 2, 145-152. https://doi.org/10.1007/s11587-009-0053-1
  23. R. Kumar and A. Gaur, λ-rings, φ-λ-rings, and φ-∆-rings, Filomat 33 (2019), no. 16, 5125-5134. https://doi.org/10.2298/fil1916125k
  24. R. Kumar and A. Gaur, Maximal non λ-subrings, Czechoslovak Math. J. 70 (2020), no. 2, 323-337. https://doi.org/10.21136/cmj.2019.0298-18
  25. R. Kumar and A. Gaur, Maximal non valuation domains in an integral domain, Czechoslovak Math. J. 70 (2020), no. 4, 1019-1032. https://doi.org/10.21136/cmj.2020.0098-19
  26. M. Nagata, Local Rings, Interscience, New York, 1962.