DOI QR코드

DOI QR Code

Recent developments in liquid-phase synthesis and applications of nanomagnesia

  • Hanie, Abdollahzade (Department of Biology, Faculty of Science, Urmia University) ;
  • Asghar, Zamani (Department of Nanotechnology, Faculty of Chemistry, Urmia University)
  • Received : 2021.12.29
  • Accepted : 2022.11.14
  • Published : 2023.01.25

Abstract

Recent developments in the synthesis of nanomagnesia of controlled sizes and shapes that are suitable for various applications are reviewed. Two main methods, based on liquid-phase synthesis, i.e., chemical methods and bio-based methods, are used to synthesize nanomagnesia. Conventionally, nanomagnesia was synthesized by chemical methods such as coprecipitation, sol-gel, combustion method, and so on using different chemical agents and stabilizers which later on become responsible for several biological risks because of the toxicity of used chemicals. Bio-based protocols are growing as another environmental friend method for the synthesis of various nanostructures especially nanomagnesia using biomass, plant extracts, alga, and fungi as a source of precursor material. The ideal method should offer better control of textural properties of nanostructures and decrease the necessity for purification of the synthesized nanoproducts, which sequentially removes the use of large amounts of chemicals and organic solvents and manipulation of products that are unsafe to the environment. Finally, the broad applicability of nanomagnesia in diverse areas is presented. Employment of nanomagnesia reported in several laboratory and industrial fields are valued from the standpoint of the significance of these issues for technological requests, as described in the literature. Nanomagnesia has various applications such as antimicrobial performance, removing pollutants, batteries application, and catalysis.

Keywords

References

  1. Abbas, S., Uzair, B., Sajjad, S., Leghari, S.A.K., Noor, S., Niazi, M.B.K., Farooq, I. and Iqbal, H. (2021) "Dual-functional green facile CuO/MgO nanosheets composite as an efficient antimicrobial agent and photocatalyst", Arab. J. Sci. Eng., 47(5), 5895-5909. https://doi.org/10.1007/s13369-021-05741-1.
  2. Abdallah, Y., Ogunyemi, S.O., Abdelazez, A., Zhang, M., Hong, X., Ibrahim, E., Hossain, A., Fouad, H., Li, B. and Chen, J. (2019) "The green synthesis of MgO nano-flowers using Rosmarinus officinalis L. (rosemary) and the antibacterial activities against Xanthomonas oryzae pv. oryzae", BioMed Res. Int., 2019, 5620989. https://doi.org/10.1155/2019/5620989.
  3. Alshammari, H., Alhumaimess, M., Alotaibi, M.H. and Alshammari, A.S. (2017) "Catalytic activity of bimetallic AuPd alloys supported MgO and MnO2 nanostructures and their role in selective aerobic oxidation of alcohols", J. King Saud Univ. Sci., 29, 561-566. http://doi.org/10.1016/j.jksus.2017.03.003.
  4. Amina, M., Al Musayeib, N.M., Alarfaj, N.A., El-Tohamy, M.F., Oraby, H.F., Al Hamoud, G.A., Bukhari, S.I. and Moubayed, N.M.S. (2020) "Biogenic green synthesis of MgO nanoparticles using Saussurea costus biomasses for a comprehensive detection of their antimicrobial, cytotoxicity against MCF-7 breast cancer cells and photocatalysis potentials", PLoS ONE, 15(8), e0237567. https://doi.org/10.1371/journal.pone.0237567.
  5. Ammulu, M.A., Vinay Viswanath, K., Giduturi, A.K., Vemuri P.K., Mangamuri, U. and Poda S. (2021) "Phytoassisted synthesis of magnesium oxide nanoparticles from Pterocarpus marsupium rox.b heartwood extract and its biomedical applications", J. Genet. Eng. Biotechnol., 19, 21. https://doi.org/10.1186/s43141-021-00119-0.
  6. Amrulloh, H., Fatiqin, A., Simanjuntak, W., Afriyani, H. and Annissa, A. (2021) "Bioactivities of nano-scale magnesium oxide prepared using aqueous extract of Moringa Oleifera leaves as green agent" Adv. Nat. Sci: Nanosci. Nanotechnol., 12(1), 015006. http://doi.org/10.1088/2043-6254/abde39.
  7. Anand, K.V., Anugraga, A.R., Kannan, M., Singaravelu, G. and Govindaraju, K. (2020) "Bio-engineered magnesium oxide nanoparticles as nano-priming agent for enhancing seed germination and seedling vigour of green gram (Vigna radiata L.)", Mater. Lett., 271, 127792. https://doi.org/10.1016/j.matlet.2020.127792.
  8. Asgari, G., Seidmohammadi, A., Esrafili, A., Faradmal, J., Noori Sepehr M., and Jafarinia, M. (2020) "The catalytic ozonation of diazinon using nano-MgO@CNT@Gr as a new heterogenous catalyst: the optimization of effective factors by response surface methodology", RSC Adv., 10, 7718-7731. http://doi.org/10.1039/c9ra10095d.
  9. Azzam, A.M., Shenashen, M.A., Mostafa, B.B., Kandeel, W.A. and El-Safty, S.A. (2019) "Antibacterial activity of magnesium oxide nanohexagonal sheets for wastewater remediation", Environ. Prog. Sustain. Energy, 38(s1), S260-S266. https://doi.org/10.1002/ep.12999.
  10. Balaz, M., Balazova, L., Kovacova, M., Daneu, N., Salayova, A., Bedlovicova, Z. and Tkacikova, L. (2019) "The relationship between precursor concentration and antibacterial activity of biosynthesized Ag nanoparticles", Adv. Nano Res., 7(2), 125-134. https://doi.org/10.12989/anr.2019.7.2.125.
  11. Bao, Y., He, J., Song, K., Guo, J., Zhou, X. and Liu, S. (2021) "Plant-Extract-Mediated Synthesis of Metal Nanoparticles", J. Chem., 6562687. https://doi.org/10.1155/2021/6562687. 
  12. Bhagyaraj, S.M., Oluwafemi, O.S., Kalarikkal, N. and Thomas, S. (2018), Synthesis of InorganicNanomaterials, Woodhead Publishing.
  13. Baig, N., Kammakakam, I. and Falath, W. (2021) "Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges", Mater. Adv., 2, 1821-1871. https://doi.org/10.1039/D0MA00807A.
  14. Castillo, I.F., De Matteis, L., Marquina, C., Guillen, E.G., de la Fuente, J.M. and Mitchell, S.G. (2019) "Protection of 18th century paper using antimicrobial nano-magnesium oxide", Int. Biodeterior. Biodegradation, 141, 79-86. https://doi.org/10.1016/j.ibiod.2018.04.004.
  15. Cushing, B.L., Kolesnichenko, V.L. and C.J. O'Connor (2004) "Recent advances in the liquid-phase syntheses of inorganic nanoparticles", Chem. Rev., 104(9), 3893-3946. https://doi.org/10.1021/cr030027b.
  16. Danks, A.E., Hall, S.R., and Schnepp, Z. (2016) "The evolution of 'sol-gel' chemistry as a technique for materials synthesis", Mater. Horiz., 3, 91-112. https://doi.org/10.1039/C5MH00260E.
  17. Dakroury, G.A., Abo-Zahra, Sh.F. and Hassan, H.S. "Utilization of olive pomace in nano MgO modification for sorption of Ni(II) and Cu(II) metal ions from aqueous solutions", Arab. J. Chem., 13, 8, 6510-6522. https://doi.org/10.1016/j.arabjc.2020.06.008.
  18. Das, B., Moumita, S., Ghosh, S., Khan, M.I., Indira, D., Jayabalan, R., Tripathy, S.K., Mishra, A. and Balasubramanian, P. (2018) "Biosynthesis of magnesium oxide (MgO) nanoflakes by using leaf extract of Bauhinia purpurea and evaluation of its antibacterial property against Staphylococcus aureus", Mater. Sci. Eng. C, 91, 436-444. https://doi.org/10.1016/j.msec.2018.05.059.
  19. Dawood, S., Ahmad, M., Ullah, K., Zafar, M. and Khan, K. (2018) "Synthesis and characterization of methyl esters from nonedible plant species yellow oleander oil, using magnesium oxide (MgO) nano-catalyst", Mater. Res. Bull., 101, 371-379. https://doi.org/10.1016/j.materresbull.2018.01.047.
  20. Deepa, B. and Rajendran, V. (2018) "Investigation of organic solvents assisted nano magnesium oxide nanoparticles and their structural, morphological, optical and antimicrobial performance", Mater. Res. Express, 5(1), 015033. https://doi.org/10.1088/2053-1591/aaa0b5.
  21. Deganelloa, F. and Tyagi, A.K. (2018) "Solution combustion synthesis, energy and environment: Best parameters for better materials", Prog. Cryst. Growth Charact. Mater., 64, 23-61. https://doi.org/10.1016/j.pcrysgrow.2018.03.001.
  22. De Silva, R.T., Mantilaka, M.M.M.G.P.G., Ratnayake, S.P., Amaratunga, G.A.J. and Nalin de Silva, K.M. (2017a) "NanoMgO reinforced chitosan nanocomposites for high performance packaging applications with improved mechanical, thermal and barrier properties", Carbohydr. Polym., 157, 739-747. http://doi.org/doi:10.1016/j.carbpol.2016.10.038.
  23. De Silva, R.T., Mantilaka, M.M.M.G.P.G., Goh, K.L., Ratnayake, S.P., Amaratunga, G.A.J. and Nalin de Silva,K.M. (2017b) "Magnesium oxide nanoparticles reinforced electrospun alginate-based nanofibrous scaffolds with improved physical properties", Int. J. Biomater., 2017, 1391298. https://doi.org/10.1155/2017/1391298.
  24. Diwald O. and Berger T. (2022), Metal Oxide Nanoparticles, Wiley & Sons.
  25. Dobrucka, R. (2018) "Synthesis of MgO Nanoparticles Using Artemisia abrotanum Herba Extract and Their Antioxidant and Photocatalytic Properties", Iran. J. Sci. Technol. Trans. Sci., 42, 547-555. https://doi.org/10.1007/s40995-016-0076-x.
  26. Durgalakshmi, D., Ajay Rakkesh, R., Kamil, S., Karthikeyan, S. and Balakumar, S. (2019) "Rapid dilapidation of alcohol using magnesium oxide and magnesium aspartate based nanostructures: A raman spectroscopic and molecular simulation approach", J. Inorg. Organomet. Polym. Mater., 29, 1390-1399. https://doi.org/10.1007/s10904-019-01105-3.
  27. Elakkiya, V.T., Rajaram, K., Meenakshi, R.V., Ravi Shankar, K., and Sureshkumar, P. (2020) Green Synthesis of MgO Nanoparticles Using Sesbania bispinosa and Its in Vitro Effect on Chlorophyll Content in Long Bean Plant, In Green Synthesis of Nanoparticles: Applications and Prospects, Springer, Singapore.
  28. El-Shamy, A.G. (2021) "New nano-composite based on carbon dots (CDots) decorated magnesium oxide (MgO) nano-particles (CDots@MgO) sensor for high H2S gas sensitivity performance", Sens. Actuators B Chem., 329, 129154. https://doi.org/10.1016/j.snb.2020.129154.
  29. Essien, E.R., Atasie, V.N., Okeafor, A.O. and Nwude, D.O. (2020) "Biogenic synthesis of magnesium oxide nanoparticles using Manihot esculenta (Crantz) leaf extract", Int. Nano Lett., 10, 43-48. https://doi.org/10.1007/s40089-019-00290-w.
  30. Fathy, R.M. and Mahfouz. A.Y. (2021) "Eco-friendly graphene oxide-based magnesium oxide nanocomposite synthesis using fungal fermented by-products and gamma rays for outstanding antimicrobial, antioxidant, and anticancer activities", J. Nanostruct. Chem., 11, 301-321. https://doi.org/10.1007/s40097-020-00369-3.
  31. Fernandes M., Singh K.R.B., Sarkar T., Singh P. and Singh R.P. (2020) "Recent applications of magnesium oxide (mgo) nanoparticles in various domains", Adv. Mater. Lett., 11(8), 1-10. https://doi.org/10.5185/amlett.2020.081543.
  32. Fouda. A., Hassan, S.E., Saied, E. and Hamza, M.F. (2021) "Photocatalytic degradation of real textile and tannery effluent using biosynthesized magnesium oxide nanoparticles (MgONPs), heavy metal adsorption, phytotoxicity, and antimicrobial activity", J. Environ. Chem. Eng., 9, 105346. https://doi.org/10.1016/j.jece.2021.105346.
  33. Gaspera E.D. (2021) "Special issue: Wet chemical synthesis of functional nanomaterials", Nanomaterials, 11(4), 1044. https://doi.org/10.3390/nano11041044.
  34. Ghashang, M., Mansoor, S.S., Mohammad Shafiee, M.R., Kargar, M., Najafi Biregan, M., Azimi, F. and Taghrir, H. (2016) "Green chemistry preparation of MgO nanopowders: Efficient catalyst for the synthesis of thiochromeno[4,3-b]pyran and thiopyrano[4,3-b]pyran derivatives", J. Sulphur Chem., 37(4), 377-390. https://doi.org/10.1080/17415993.2016.1149856.
  35. Guilger-Casagrande, M. and Lima, R. (2019) "Synthesis of silver nanoparticles mediated by fungi: A review", Front. Bioeng. Biotechnol., 7, 287. https://doi.org/10.3389/fbioe.2019.00287.
  36. Gunathilake, C.A., Ranathunge, G.G.T.A., Dassanayake, R.S., Illesinghe, S.D., Manchanda, A.S., Kalpage, C.S., Rajapakse, R.M.G. and Karunaratne, D.G.G.P. (2020) "Emerging investigator series: Synthesis of magnesium oxide nanoparticles fabricated on graphene oxide nanocomposite for Co2 sequestration at elevated temperatures", Environ. Sci. Nano, 7, 1225-1239. https://doi.org/10.1039/C9EN01442J.
  37. Guo, Y., Tan, C., Sun, J., Li, W., Zhang, J. and Zhao, C. (2020) "Biomass ash stabilized MgO adsorbents for CO2 capture application", Fuel, 259, 116298. https://doi.org/10.1016/j.fuel.2019.116298.
  38. Gurylev, V. (2021), Nanostructured Photocatalyst via Defect Engineering, Springer Nature, Switzerland.
  39. Hii, Y.S., Jeevanandam, J., Chan, Y.S. (2018) "Plant mediated green synthesis and nanoencapsulation of MgO nanoparticle from Calotropis gigantea: Characterisation and kinetic release studies", Inorg. Nano-Met. Chem., 48(12), 620-631. https://doi.org/10.1080/24701556.2019.1569053.
  40. Hikku, G.S., Jeyasubramanian, K. and Vignesh Kumar, S. (2017) "Nanoporous MgO as self-cleaning and anti-bacterial pigment for alkyd based coating", J. Ind. Eng. Chem., 52, 168-178. https://doi.org/10.1016/j.jiec.2017.03.040.
  41. Hoffmann, J., Nuchter, M., Ondruschka, B. and Wasserscheid, P. (2003) "Ionic liquids and their heating behaviour during microwave irradiation - a state of the art report and challenge to assessment", Green Chem., 5, 296-299. https://doi.org/10.1039/B212533A.
  42. Ijaz, I., Gilani, E. and Bukhari, A. (2020) "Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles", Green Chem. Lett. Rev., 13(3), 223-245. https://doi.org/10.1080/17518253.2020.1802517.
  43. Imani, M.M. and Safaei, M. (2019) "Optimized synthesis of magnesium oxide nanoparticles as bactericidal agents", J. Nanotechnol., 2019, 6063832. https://doi.org/10.1155/2019/6063832.
  44. Jadhav, A.H., Lim, A.C., Thorat, G.M., Jadhav, H.S. and Seo, J.G. (2016) "Green solvents ionic liquids: Structural directing pioneers for microwave assisted synthesis of controlled MgO nanostructures", RSC Adv., 6, 31675-31686. https://doi.org/10.1039/C6RA02980A.
  45. Jadhav, A.H., Prasad, D., Jadhav, H.S., Nagaraja, B.M. and Seo, J.G. (2018) "Tailoring and exploring the basicity of magnesium oxide nanostructures in ionic liquids for claisen-schmidt condensation reaction", Energy, 160, 635-647. https://doi.org/10.1016/j.energy.2018.07.036.
  46. Jayapriya, M., Premkumar, K., Arulmozhi, M. and Karthikeyan, K. (2020) "One-step biological synthesis of cauliflower-like Ag/MgO nanocomposite with antibacterial, anticancer, and catalytic activity towards anthropogenic pollutants", Res. Chem. Intermed., 46, 1771-1788. https://doi.org/10.1007/s11164-019-04062-1.
  47. Javed, R., Zia, M., Naz, S., Aisida, S.O., Ain, N. and Ao, Q. (2020) "Role of capping agents in the application of nanoparticles in biomedicine and environmental remediation: Recent trends and future prospects", J. Nanobiotechnol., 18(1), 172. https://doi.org/10.1186/s12951-020-00704-4.
  48. Jeevanandam, J., Chan, Y.S. and Danquah, M.K. (2017) "Biosynthesis and characterization of MgO nanoparticles from plant extracts via induced molecular nucleation", New J. Chem., 41, 2800-2814. https://doi.org/10.1039/C6NJ03176E.
  49. Jeevanandam, J., Chan, Y.S. and Danquah, M.K. (2020a) "Effect of pH variations on morphological transformation of biosynthesized MgO nanoparticles", Part. Sci. Technol., 38(5), 573-586. https://doi.org/10.1080/02726351.2019.1566938.
  50. Jeevanandam, J., Chan, Y.S. and Danquah, M.K. (2020b) "Cytotoxicity and insulin resistance reversal ability of biofunctional phytosynthesized MgO nanoparticles", 3 Biotech, 10(11), 489. https://doi.org/10.1007/s13205-020-02480-2.
  51. Jeevanandam, J., Chan, Y.S. and Ku, Y.H. (2018) "Aqueous Eucalyptus globulus leaf extract-mediated biosynthesis of MgO nanorods", Appl. Biol. Chem., 61, 197-208. https://doi.org/10.1007/s13765-018-0347-7.
  52. Jhansi, K., Jayarambabu, N., Reddy, K.P., Reddy, N.M., Suvarna, R.P., Rao, K.V., Kumar, V.R. and Rajendar, V. (2017) "Biosynthesis of MgO nanoparticles using mushroom extract: effect on peanut (Arachis hypogaea L.) seed germination", 3 Biotech, 7, 263. https://doi.org/10.1007/s13205-017-0894-3.
  53. Jupille, J. and Thornton, G. (2015), Defects at Oxide Surfaces, Springer, New York, U.S.A.
  54. Kaur, S., Singh, J., Rawat, R., Kumar, S., Kaur, H., Rao, K.V. and Rawat, M. (2018) "A smart LPG sensor based on chemo-bio synthesized MgO nanostructure", J. Mater. Sci. Mater. Electron., 29(14), 11679-11687. https://doi.org/10.1088/2053-1591/ab4412.
  55. Keller, C., Desrues, A., Karuppiah, S., Martin, E., Alper, J.P., Boismain, F., Villevieille, C., Herlin-Boime, N., Haon, C. and Chenevier, P. (2021) "Effect of size and shape on electrochemical performance of nano-silicon-based lithium battery", Nanomaterials, 11(2), 307. https://doi.org/10.3390/nano11020307.
  56. Khan, A., Shabir, D., Ahmad, P., Khandaker, M.U., Faruque, M.R.I. and Din, I.U. (2021)" Biosynthesis and antibacterial activity of MgO-NPs produced from Camellia-sinensis leaves extract", Mater. Res. Express, 8, 015402. https://doi.org/10.1088/2053-1591/abd421.
  57. Kumar, M.R.A., Mahendra, B., Nagaswarupa, H.P., Surendra, B.S., Ravikumar, C.R. and Shetty, K. (2018) "Photocatalytic studies of MgO nano powder; synthesized by green mediated route", Mater. Today Proc., 5, 22221-22228. https://doi.org/10.1016/j.matpr.2018.06.587.
  58. Kumar, M.R.A., Nagaswarupa, H.P., Ravikumar, C.R., Prashantha, S.C., Nagabhushana, H. and Bhatt, A.S. (2019) "Green engineered nano MgO and ZnO doped with Sm3+: Synthesis and a comparison study on their characterization, PC  activity and electrochemical properties", J. Phys. Chem. Solids, 127, 127-139. https://doi.org/10.1016/j.jpcs.2018.12.012.
  59. Letti, C.J., Costa, K.A.G., Gross, M.A. Paterno, L.G., Pereira-daSilva, M.A. Morais, P.C. and Soler, M.A.G. (2017) "Synthesis, morphology and electrochemical applications of iron oxide based nanocomposites", Adv. Nano Res., 5(3), 215-230. http://doi.org/10.12989/anr.2017.5.3.215.
  60. Li, X., Feng, Y., Li, H. and Zhang, Q. (2022) "Effect of anionic groups on the antibacterial activity of magnesium oxide nanoparticles", Colloids Surf. A, 635, 127978. https://doi.org/10.1016/j.colsurfa.2021.127978.
  61. Li, L., Xi, W.S., Su, Q., Li, Y., Yan, G.-H., Liu, Y., Wang, H. and Cao, A. (2019) "Unexpected size effect: The interplay between different-sized nanoparticles in their cellular uptake", Small, 15(38), 1901687. https://doi.org/10.1002/smll.201901687.
  62. Ma, G., Salahub, S., Montemagno, C. and Abraham, S. (2018) "Highly active magnesium oxide nano materials for the removal of arsenates and phosphates from aqueous solutions", NanoStruct. Nano-Objects., 13, 74-81. https://doi.org/10.1016/j.nanoso.2017.11.006.
  63. Madzokerea, T.C. and Karthigeyan, A. (2017) "Heavy metal ion effluent discharge containment using magnesium oxide (MgO) nanoparticles", Mater. Today Proc., 4, 9-18. https://doi.org/10.1016/j.matpr.2017.01.187.
  64. Malarkodi, C., Rajeshkumar, S., Paulkumar, K., Jobitha, G.G., Vanaja, M. and Annadurai, G. (2013) "Biosynthesis of semiconductor nanoparticles by using sulfur reducing bacteria Serratia nematodiphila", Adv. Nano Res., 1(2), 83-91. http://doi.org/10.12989/anr.2013.1.2.083.
  65. Maji, J., Pandey, S. and Basu, S. (2020) "Synthesis and evaluation of antibacterial properties of magnesium oxide nanoparticles", Bull. Mater. Sci., 43, 25. https://doi.org/10.1007/s12034-019-1963-5.
  66. Maruthai, J., Muthukumarasamy, A. and Baskaran, B. (2018) "Optical, biological and catalytic properties of ZnO/MgO nanocomposites derived via Musa paradisiaca bract extract", Ceram. Int., 44(11), 13152-13160. https://doi.org/10.1016/j.ceramint.2018.04.138.
  67. Masoud, E.M., El-Bellihi, A.A. Bayoumy, W.A. and Mohamed, E.A. (2018) "Polymer composite containing nano magnesium oxide filler and lithiumtriflate salt: An efficient polymer electrolyte for lithium ion batteries application", J. Mol. Liq., 260, 237-244. https://doi.org/10.1016/j.molliq.2018.03.084.
  68. Miu, B.A. and Dinischiotu, A. (2022), "New green approaches in nanoparticles synthesis: An overview", Molecules, 27(19), 6472. https://doi.org/10.3390/molecules27196472.
  69. Narendhran, S., Manikandan, M. & Shakila, P.B. (2019) "Antibacterial, antioxidant properties of Solanum trilobatum and sodium hydroxide-mediated magnesium oxide nanoparticles: A green chemistry approach", Bull. Mater. Sci., 42, 133. https://doi.org/10.1007/s12034-019-1811-7.
  70. Niederberger, M. and Pinna, N. (2009), Metal Oxide Nanoparticles in Organic Solvents, Springer-Verlag, London, U.K.
  71. Oladoja, N.A., Seifert, M.L., Drewes, J.E. and Helmreich, B. (2017) "Influence of organic load on the defluoridation efficiency of nano-magnesium oxide in groundwater", Sep. Purif. Technol., 174, 116-125. http://doi.org/10.1016/j.seppur.2016.10.006.
  72. Omran, B.A. (2020), Nanobiotechnology: A Multidisciplinary Field of Science, Springer Nature, Switzerland.
  73. Oscar, F.L., Vismaya, S., Arunkumar, M., Thajuddin, N., Dhanasekaran, D. and Nithya, C. (2016), Algal Nanoparticles: Synthesis and Biotechnological Potentials, Algae - Organisms for Imminent Biotechnology, IntechOpen.
  74. Pachiyappan, J., Gnanasundaram, N. and Rao, G.L. (2020) "Preparation and characterization of ZnO, MgO and ZnO-MgO hybrid nanomaterials using green chemistry approach", Results Mater., 7, 100104. https://doi.org/10.1016/j.rinma.2020.100104.
  75. Parashar, M., Shukla, V.K. anf Singh, R. (2020) "Metal oxides nanoparticles via sol-gel method: a review on synthesis, characterization and applications", J. Mater. Sci. Mater. Electron., 31, 3729-3749. https://doi.org/10.1007/s10854-020-02994-8.
  76. Pavithra, S., Mohana, B., Mani, M., Saranya, P.E., Jayavel, R., Prabu, D. and Kumaresan, S. 92020) "Bioengineered 2D ultrathin sharp-edged MgO nanosheets using achyranthes aspera leaf extract for antimicrobial applications", J. Inorg. Organomet. Polym. Mater., 31, 1120-1133. https://doi.org/10.1007/s10904-020-01772-7.
  77. Prado, D.C., Fernandez, I. and Rodriguez-Paez, J.E. (2020) "MgO nanostructures: Synthesis, characterization and tentative mechanisms of nanoparticles formation", Nano-Struct. NanoObjects, 23, 100482. https://doi.org/10.1016/j.nanoso.2020.100482.
  78. Phan, C.M. and Nguyen, H.M. (2017) "Role of capping agent in wet synthesis of nanoparticles", J. Phys. Chem. A, 121(17), 3213-3219. https://doi.org/10.1021/acs.jpca.7b02186.
  79. Rani, P., Kaur, G., Rao, K.V., Singh, J. and Rawat, M. (2020), "Impact of green synthesized metal oxide nanoparticles on seed germination and seedling growth of Vigna radiata (Mung Bean) and Cajanus cajan (Red Gram)", J. Inorg. Organomet. Polym., 30, 4053-4062. https://doi.org/10.1007/s10904-020-01551-4.
  80. Saied, E., Eid, A.M., Hassan, S.E.D., Salem, S.S., Radwan, A.A., Halawa, M., Saleh, F.M., Saad, H.A., Saied, E.M. and Fouda, A. (2021) "The catalytic activity of biosynthesized magnesium oxide nanoparticles (MgO-NPs) for inhibiting the growth of pathogenic microbes, tanning effluent treatment, and chromium ion removal", Catalysts, 11(7), 821. https://doi.org/10.3390/catal11070821.
  81. Safavi, B. Asadollahfardi, G. and Khodadadi Darban, A. (2017) "Cyanide removal simulation from wastewater in the presence of titanium dioxide nanoparticles", Adv. Nano Res., 5(3), 27-34. http://doi.org/10.12989/anr.2017.5.1.027.
  82. Siriwardane, I.W., Udangawa, R., de Silva, R.M. Kumarasinghe, A.R., Acres, R.G., Hettiarachchi, A., Amaratunga, G.A.J. and de Silva, K.M.N. (2017) "Synthesis and characterization of nano magnesium oxide impregnated granular activated carbon composite for H2S removal applications", Mater. Des., 136, 127-136. https://doi.org/10.1016/j.matdes.2017.09.034.
  83. Schwab, T., Niedermaier, M., Aicher, K, Elsasser, M.S., Zickler, G.A. and Diwald, O. (2021) "Always cubes: A comparative evaluation of gas phase synthesis methods and precursor selection for the production of MgO nanoparticles" Open Ceram., 6, 100104. https://doi.org/10.1016/j.oceram.2021.100104.
  84. Selvi, A. and N. Das, (2016) "Degradation of Cefdinir by Candida Sp. SMN04 and MgO Nanoparticles-An Integrated (NanoBio) Approach", Environ. Prog. Sustain. Energ., 35(3), 706-714. https://doi.org/10.1002/ep.12279.
  85. Shand, M.A. (2006), The Chemistry and Technology of Magnesia, John Wiley & Sons, New Jersey, U.S.A.
  86. Siaw, Y.M., Jeevanandam, J., Hii, Y.S. and Chan Y.S. (2020) "Photo-irradiation coupled biosynthesis of magnesium oxide nanoparticles for antibacterial application", Naunyn Schmiedebergs Arch. Pharmacol., 393(12), 2253-2264. https://doi.org/10.1007/s00210-020-01934-x.
  87. Singh, J., Dutta, T., Kim, K.H. Rawat, M., Samddar, P. and Kumar, P. (2018) "Green synthesis of metals and their oxide nanoparticles: Applications for environmental remediation", J. Nanobiotechnol., 16, 84. https://doi.org/10.1186/s12951-018-0408-4.
  88. Singh, J.P. Singh, V., Sharma, A., Pandey, G., Chae, K.H. and Lee, S. (2020) "Approaches to synthesize MgO nanostructures for diverse applications" Heliyon, 6(9), e04882. https://doi.org/10.1016/j.heliyon.2020.e04882.
  89. Sharma, G., Soni, R. and Jasuja, N.D. (2016) "Phytoassisted synthesis of magnesium oxide nanoparticles with Swertia chirayaita", J. Taibah Univ. Sci., 11, 471-477. https://doi.org/10.1016/j.jtusci.2016.09.004.
  90. Sterrer, M. Diwald, O. and Knozinger, E. (2000) "Vacancies and Electron Deficient Surface Anions on the Surface of MgO Nanoparticles", J. Phys. Chem. B, 104(15), 3601-3607. https://doi.org/10.1021/jp993924l.
  91. Supraja, N., Avinash, B. and Prasad, T.N.V.K.V. (2017) "Antimicrobial efficacy and safety analysis of zinc oxide nanoparticles against water borne pathogens", Adv. Nano Res., 5(2), 127-140. http://doi.org/10.12989/anr.2017.5.2.127.
  92. Sur. U.K. (2014) "Biological green synthesis of gold and silver nanoparticles", Adv. Nano Res., 2(3), 135-145. http://doi.org/10.12989/anr.2014.2.3.135.
  93. Sushma, N.J., Prathyusha, D., Swathi, G., Madhavi, T., Raju, B.D.P., Mallikarjuna, K. and Kim, H.S. "Facile approach to synthesize magnesium oxide nanoparticles by using Clitoria ternatea-characterization and in vitro antioxidant studies", Appl. Nanosci., 6, 437-444. http://doi.org/10.1007/s13204-015-0455-1.
  94. Szalaj, U., Swiderska-Sroda, A., Chodara, A., Gierlotka, S. and Lojkowski, W. (2019) "Nanoparticle size effect on water vapour adsorption by hydroxyapatite", Nanomaterials, 9(7), 1005. https://doi.org/10.3390/nano9071005.
  95. Thirupathi, R., Solleti, G., Sreekanth, T., Sadasivuni, K.K. and Rao, K.V. (2018), "A comparative study of chemically and biologically synthesized MgO nanomaterial for liquefied petroleum gas detection", J. Electron. Mater., 47(7), 3468-3473. https://doi.org/10.1007/s11664-018-6185-x.
  96. Thomas, S., Sunny, A.T. and Velayudhan, P. (2020), In Colloidal Metal Oxide Nanoparticles, Elsevier, Amsterdam, Netherlands.
  97. Umaralikhan, L. and Jaffar, M.J.M. (2018) "Green synthesis of MgO nanoparticles and it antibacterial activity", Iran. J. Sci. Technol. Trans. Sci., 42, 477-485. https://doi.org/110.1007/s40995-016-0041-8.
  98. Varma, A., Mukasyan, A.S., Rogachev, A.S. and Manukyan, K.V. (2016) "Solution combustion synthesis of nanoscale materials", Chem. Rev., 116, 14493-14586. https://doi.org/10.1021/acs.chemrev.6b00279.
  99. Vasanthakumar, A., Redhi, G.G. and Gengan, R.M. (2018) Fundamentals of Nanoparticles, Elsevier.
  100. Venkatachalam, A., Jesuraj, J.P. and Sivaperuman, K. (2021) "Moringa oleifera leaf extract-mediated green synthesis of nanostructured alkaline earth oxide (MgO) and its physicochemical properties", J. Chem., 4301504. https://doi.org/10.1155/2021/4301504.
  101. Verma, S.K., Nisha, K., Panda, P.K., Patel, P., Kumari, P., Mallick, M.A., Sarkar, B. and Das, B. (2020) "Green synthesized MgO nanoparticles infer biocompatibility by reducing in vivo molecular nanotoxicity in embryonic zebrafish through arginine interaction elicited apoptosis", Sci Total Environ., 713, 136521. https://doi.org/10.1016/j.scitotenv.2020.136521.
  102. Wang, B., Xiong, X., Ren, H. and Huang, Z.Y. (2017) "Preparation of MgO nanocrystals and catalytic mechanism on phenol ozonation", RSC Adv., 7, 43464-43473. https://doi.org/10.1039/c7ra07553g.
  103. Wegner, S., Janiak, C. (2017) "Metal nanoparticles in ionic liquids", Top Curr Chem (Z), 375, 65. https://doi.org/10.1007/s41061-017-0148-1.
  104. Yan, X., Tian, Z., Peng, W., Zhang, J., Tong, Y., Li, J., Sun, D., Ge, H. and Zhang, J. "Synthesis of nano-octahedral MgO via a solvothermal-solid-decomposition method for the removal of methyl orange from aqueous solutions", RSC Adv., 10, 10681-10688. https://doi.org/10.1039/c9ra10296e.
  105. Zaky, M.M., Eyssa, H.M. and Sadek, R.F. "Improvement of the magnesium battery electrolyte properties through gamma irradiation of nano polymer electrolytes doped with magnesium oxide nanoparticles", J. Vinyl Addit. Technol., 25(3), 243-254. https://doi.org/10.1002/vnl.21683.
  106. Zamani A., Poursattar Marjani A., Abdollahpour N., (2019b) "Synthesis of high surface area boehmite and alumina by using walnut shell as template", Int. J. Nano Biomater., 8(1), 1-14. https://doi.org/10.1504/IJNBM.2019.097588.
  107. Zamani, A., Poursattar Marjani, A. and Abedi Mehmandar, M. (2019c) "Synthesis of high surface area magnesia by using walnut shell as a template", Green Proc. Synth., 8, 199-206. https://doi.org/10.1515/gps-2018-0066.
  108. Zamani, A., Poursattar Marjani, A. and Alimoradlu, K. (2018b) "Walnut Shell-Templated Ceria Nanoparticles: Green Synthesis, Characterization and Catalytic Application", Int. J. Nanosci., 17(6), 1850008. https://doi.org/10.1142/S0219581X18500084.
  109. Zamani, A., Poursattar Marjani, A. and Mousavi, Z. (2019a) "Agricultural waste biomass-assisted nanostructures: Synthesis and application", Green Process Synth., 8, 421-429. https://doi.org/10.1515/gps-2019-0010.
  110. Zamani, A., Poursattar Marjani, A., Nikoo, A., Heidarpoura, M. and Dehghan, A. (2018a) "Synthesis and characterization of copper nanoparticles on walnut shell for catalytic reduction and C-C coupling reaction", Inorg. Nano-Metal Chem., 48(3), 176-181. https://doi.org/10.1080/24701556.2018.1503676.