DOI QR코드

DOI QR Code

PERISTALTIC PUMPING OF AN ELLIS FLUID IN AN INCLINED ASYMMETRIC CHANNEL

  • A., SMALL (Faculty of Engineering, Caribbean Maritime University) ;
  • P., NAGARANI (Department of Mathematics, The University of the West Indies) ;
  • M., NARAHARI (Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS)
  • Received : 2021.08.04
  • Accepted : 2022.10.12
  • Published : 2023.01.30

Abstract

The flow of an incompressible Ellis fluid in an inclined asymmetric channel, driven by peristaltic waves was studied under low Reynolds number and long wavelength assumptions. The wave on each side of the channel are assumed to be an infinite train of sinusoidal waves, both having the same constant wave speed and wavelength however, they vary in wave amplitude, channel half width and phase angle. We derived expressions for the axial and transverse velocities, volume flow rate, pressure rise per unit wavelength and streamlines. The effects of varying the wave amplitudes, the phase angle, the channel width, the angle of inclination of the channel as well as the fluid parameters on the flow were analyzed. Trapping conditions were determined and the presence of reflux highlighted using the streamlines for the necessary channel and fluid conditions. By varying the fluid parameters, changes in the fluid that deviated from the Newtonian case resulted in a reduction in the axial velocity in the neighborhood of the center of the channel and a simultaneous increase in the velocity at the periphery of the channel. A nonlinear relation was observed with the pressure rise and the volume flow rate. This nonlinear relation is more pronounced with an increase in the absolute value of the volume flow rate. For Newtonian fluids a linear relation exists between these two variables. The fluid parameters had little effects on the streamlines. However, variations of the wave amplitudes, volume flow, channel width and phase angle had greater effects on the streamlines and hence the trapped region.

Keywords

References

  1. F.M. Abbasi, T. Hayat, B. Ahmad, and G.Q. Chen, Peristaltic Motion of a non-Newtonian Nanofluid in an Asymmetric Channel, Zeitschrift fur Naturforschung a 69 (2014), 451-461. https://doi.org/10.5560/zna.2014-0041
  2. N. Ali, A. Abbasi and I. Ahmad, Channel flow of Ellis fluid due to peristalsis, American Institute of Physics (AIP) Advances 5 (2015), 097214(1)-(9).
  3. N.T.M. Eldabe, O.M. Abo-Seida, A.A.S. Abo-Seliem, A.A. ElShekhipy and N. Hegazy, Peristaltic Transport of Magnetohydrodynamic Carreau Nanofluid with Heat and Mass Transfer inside Asymmetric Channel, American Journal of Computational Mathematics 7 (2017), 1-20. https://doi.org/10.4236/ajcm.2017.71001
  4. M.E. Gendy, O.A. Beg, A. Kadir, M.N. Islam and D. Tripathi, Computational fluid dynamics simulation and visualization of Newtonian and non-Newtonian transport in a peristaltic micro-pump, Journal of Mechanics in Medicine and Biology 21 (2021), 2150059.
  5. Y.C. Fung and C.S Yih, Peristaltic transport, Journal of Applied Mechanics 35 (1968), 669-675. https://doi.org/10.1115/1.3601290
  6. T. Hayat, Y. Wang, A.M. Siddiqui, K. Hutter and S. Asghar, Peristaltic transport of a third-order fluid in a cicular cylindrical tube, Mathematical Models and Methods in Applied Sciences 12 (2002), 1691-1702. https://doi.org/10.1142/S0218202502002288
  7. V.O. Kheyfets and S.L. Kieweg, Gravity-Driven Thin Film Flow of an Ellis Fluid, Journal of Nonnewtonian Fluid Mechanics 202 (2013), 88-98. https://doi.org/10.1016/j.jnnfm.2013.09.010
  8. M. Kothandapani and S. Srinivas, Non-linear peristaltic transport of a Newtonian fluid in an inclined asymmetric channel through a porous medium, Physics Letters A 372 (2008), 1265-1276. https://doi.org/10.1016/j.physleta.2007.09.040
  9. P. Hariharan, V. Seshadri and R.K. Banerjee, Peristaltic transport of non-Newtonian Fluid in a diverging tube with different wave forms, Mathematical and Computer Modelling 48 (2008), 998-1017. https://doi.org/10.1016/j.mcm.2007.10.018
  10. T.W. Latham, Fluid motions in a peristaltic pump, Cambridge, MA, Massachusetts, 1966.
  11. M.J. Manton, Long-wavelength perestaltic pumping at low Reynolds number, Journal of Fluid Mechanics 68 (1975), 467-76. https://doi.org/10.1017/S0022112075001760
  12. A. Mernone, J. Mazumdar and S.K. Lucas, A mathematical study of peristaltic transport of a casson fluid, Mathematical and Computer Modelling 35 (2002), 895-912. https://doi.org/10.1016/S0895-7177(02)00058-4
  13. M. Mishra, A.R. Rao, Peristaltic transport of a Newtonian fluid in an asymmetric channel, Z. angew. Math. Phys. 54 (2003), 532-550. https://doi.org/10.1007/s00033-003-1070-7
  14. S. Nadeem, S. Akhtar and A. Saleem, Peristaltic flow of a heated Jeffrey fluid inside an elliptic duct: streamline analysis, Appl. Math. Mech.-Engl. Ed. 42 (2021), 583-592. https://doi.org/10.1007/s10483-021-2714-6
  15. P. Naga Rani and G. Sarojamma, Peristaltic transport of a Casson fluid in an asymmetric channel, Australas Phys. Eng. Sci. Med. 27 (2004), 49-59. https://doi.org/10.1007/BF03178376
  16. P. Nagarani and A. Lewis, Peristaltic flow of a Casson fluid in an annulus, Korea-Australia Rheology Journal 24 (2012), 1-9.
  17. Q.H. Nguyen and H.D. Nguyen, Incompressible Non-Newtonian Fluid Flows, Continuum Mechanics-Progress in Fundamentals and Engineering Applications 1 (2012), 47-72.
  18. S. Noreen, T. Kausar, D. Tripathi, Qurat Ul Ain and D.C. Lu, Heat transfer analysis on creeping flow Carreau fluid driven by peristaltic pumping in an inclined asymmetric channel, Thermal Science and Engineering Progress 17 (2020), 100486.
  19. A.R. Rao and M. Mishra, Peristaltic transport of a power-law fluid in a porous tube, Journal of Non-newtonian Fluid Mechanics 121 (2004), 163-174. https://doi.org/10.1016/j.jnnfm.2004.06.006
  20. S. Saleem, S. Akhtar, S. Nadeem, A. Saleem, M. Ghalambaz and A. Issakhov, Mathematical study of Electroosmotically driven peristaltic flow of Casson fluid inside a tube having systematically contracting and relaxing sinusoidal heated walls, Chinese Journal of Physics 71 (2021), 300-311. https://doi.org/10.1016/j.cjph.2021.02.015
  21. A.H. Shapiro, M.Y. Jaffrin, S.L, Weinberg, Peristaltic pumping with long wavelengths at low Reynolds number, Journal of Fluid Mechanics 1 (1969), 799-825. https://doi.org/10.1017/S0022112069000899
  22. L.M. Srivastava and V.P. Srivastava, Peristaltic Transport of a Non-Newtonian Fluid: Application to the Vas Differens and Small Intestine, Annals of Biomedical Engineering 13 (1985), 137-153. https://doi.org/10.1007/BF02584235
  23. S. Srinivas and R. Gayathri, Peristaltic transport of a Newtonian fluid in a vertical asymmetric channel with heat transfer and porous medium, Applied Mathematics and Computation 215 (2009), 185-196. https://doi.org/10.1016/j.amc.2009.04.067
  24. R.T. Steller, Generalized slit flow of an Ellis fluid, Polymer Engineering and Science 41 (2001), 1859-1870. https://doi.org/10.1002/pen.10883
  25. S. Usha and A.R. Rao, Peristaltic transport of two-layered power-law fluids, Journal of Biomechanical Engineering-transactions of The Asme 119 (1997), 483-488. https://doi.org/10.1115/1.2798297
  26. K. Vajravelu, S. Sreenadh and V.R. Babu, Peristaltic pumping of a Herschel-Bulkley fluid in a channel, Applied Mathematics and Computation 169 (2005), 726-735. https://doi.org/10.1016/j.amc.2004.09.063
  27. K.K. Vajravelu, S. Sreenadh and V.R. Babu, Peristaltic pumping of a Herschel-Bulkley fluid in a channel, International Journal of Non-linear Mechanics 40 (2005), 83-90.  https://doi.org/10.1016/j.ijnonlinmec.2004.07.001