DOI QR코드

DOI QR Code

영동지역 장기간(2000~2020년) 활강 강풍 특성

Characteristics of Long-term (2000~2020) Downslope Windstorm in the Yeongdong Region

  • 정지훈 (강릉원주대학교 대기환경과학과) ;
  • 김병곤 (강릉원주대학교 대기환경과학과) ;
  • 채유진 (강릉원주대학교 대기환경과학과) ;
  • 최영길 (강릉원주대학교 대기환경과학과) ;
  • 김지윤 (강릉원주대학교 대기환경과학과) ;
  • 임병환 (국립기상과학원 예보연구부 재해기상연구소)
  • Ji-Hoon Jeong (Department of Atmospheric Environmental Sciences, Gangneung - Wonju National University) ;
  • Byung-Gon, Kim (Department of Atmospheric Environmental Sciences, Gangneung - Wonju National University) ;
  • Yu-jin Chae (Department of Atmospheric Environmental Sciences, Gangneung - Wonju National University) ;
  • Young-Gil Choi (Department of Atmospheric Environmental Sciences, Gangneung - Wonju National University) ;
  • Ji-Yoon Kim (Department of Atmospheric Environmental Sciences, Gangneung - Wonju National University) ;
  • Byung-Hwan Lim (High Impact Weather Research Laboratory, Forecast Research Department, National Institute of Meteorological Sciences)
  • 투고 : 2022.10.11
  • 심사 : 2022.12.27
  • 발행 : 2023.02.28

초록

Characteristics of downslope windstorm (DW) has been examined mainly based on 1-min average wind and the other meteorological conditions in the Yeongdong region for 2000~2020. First, a classification procedure for the downslope windstorm is proposed using surface wind speed (greater than 99 percentile), 1-hour longevity of strong wind (SW), westerly wind direction, low humidity (less than 20 percentile), and leeside warming. The number of DW days satisfying the proposed criteria is 221 (2.9% of total days and 47.5% of SW days) while the number of SW days is 465 (6.1% of total days) for 2000~2020. The occurrences of both SW and DW shows distinctive annual variation with its peak in April. In addition, mean wind speed of DW days is 8.2 m s-1 with its duration of 2 hr 30 min and relative humidity of 28% at Gangneung. An episode (7 May 2021) was selected by applying the proposed criteria to SW days of 2021. The sounding shows that the layer of wind speed greater than 25 m s-1 was lowered down to 925 hPa at Gangneung (leeside) relative to 850 hPa at Hoengseong (Wonju), in the afternoon along with significant warming and drying. Froude numbers of Wonju and Gangneung for the DW events were increased 4 and 5 times greater than those of normal days, respectively. This kind of DW long-term statistics in the leeside of the mountains is thought to build a foundation of further understanding DW mechanism.

키워드

과제정보

이 연구는 국립기상과학원의 연구개발사업인 "강원영동 동풍·강풍의 특화된 관측·예보기술 개발" 사업의 지원과 한국 연구재단의 부분적인 지원을 받아 수행된 연구입니다(No. NRF-2022R1F1A1063196).

참고문헌

  1. American Meteorological Society, 2022: 'downslope windstorm', Glossary of Meteorology, http://glossary.ametsoc.org/wiki/Downslope_windstorm.
  2. Azorin-Molina, C., S. Rehman, J. A. Guijarro, T. R. McVicar, L. Minola, D. Chen, and S. M. Vicente-Serrano, 2018: Recent trends in wind speed across Saudi Arabia, 1978-2013: a break in the stilling. Int. J. Climatol., 38, e966-e984, doi:10.1002/joc.5423.
  3. Brinkmann, W. A. R., 1974: Strong downslope winds at Boulder, Colorado. Mon. Wea. Rev., 102, 592-602, doi:10.1175/1520-0493(1974)102<0592:SDWABC>2.0.CO;2.
  4. Cho, Y. J., T. Y. Kwon, and B.-C. Choi, 2015: Characteristics of meteorological variables in the leeward side associated with the downslope windstorm over the Yeongdong region. J. Korean Earth Sci. Soc., 36, 315-329, doi:10.5467/JKESS.2015.36.4.315.
  5. Choi, Y. J., C. H. Park, S. W. Son, J. W. Lee, and D. C. Hong, 2021a: Long-term trend of surface wind speed in Korea: Anemometer height adjustment. Atmosphere, 31, 101-112, doi:10.14191/Atmos.2021.31.1.101.
  6. Choi, Y. J., C. H. Park, S. W. Son, and H. J. Kim, 2021b: Long-term trend of surface wind speed in Korea: Physical and statistical homogenizations. Atmosphere, 31, 553-562, doi:10.14191/Atmos.2021.31.5.553.
  7. Durran, D. R., and J. Klemp, 1982: On the effects of moisture on the Brunt-Vaisala frequency. J. Atmos. Sci., 39, 2152-2158, doi:10.1175/1520-0469(1982)039 <2152:OTEOMO>2.0.CO;2.
  8. Durran, D. R., 1986: Another look at downslope windstorms. Part I: The development of analogs to supercritical flow in an infinitely deep, continuously stratified fluid. J. Atmos. Sci., 43, 2527-2543, doi:10.1175/1520-0469(1986)043<2527:ALADWP>2.0.CO;2.
  9. Durran, D. R., 1990: Mountain waves and downslope winds. Atmospheric Processes over Complex Terrain, METEOR, (23), 59-81, doi:10.1007/978-1-935704-25-6_4.
  10. Hwang, H., S. H. Eun, B. G. Kim, S. J. Park, and G. M. Park, 2020: Occurrence characteristics of sea breeze in the Gangneung Region for 2009~2018. Atmosphere, 30, 221-236, doi:10.14191/Atmos.2020.30.3.221.
  11. Hoinka, K. P., 1985: Observation of the airflow over the Alps during a foehn event. Q. J. R. Meteorol. Soc., 111, 199-224, doi:10.1002/qj.49711146709.
  12. Jang, W., and H.-Y. Chun, 2008: Severe downslope windstorms of Gangneung in the springtime. Atmosphere, 18, 207-224.
  13. Kim, H. U., B. J. Kim, H. G. Nam, J. H. Jung, and J. K. Shim, 2020: Climatological spatio-temporal variation of strong wind in Korea. Atmosphere, 30, 47-57, doi:10.14191/Atmos.2020.30.1.047.
  14. Kim, J.-H., and I.-U. Chung, 2006: Study on mechanisms and orographic effect for the springtime downslope windstorm over the Yeongdong region. Atmosphere, 16, 67-83.
  15. Kim, M.-G., B.-G. Kim, S.-H. Eun, Y.-J. Chae, J.-H. Jeong, Y.-G. Choi, and G.-M. Park, 2021: Analysis of the relationship of cold air damming with snowfall in the Yeongdong Region. Atmosphere, 31, 421-431, doi: 10.14191/Atmos.2021.31.4.421.
  16. Klemp, J. B., and D. R. Lilly, 1975: The dynamics of waveinduced downslope winds. J. Atmos. Sci., 32, 320-339, doi:10.1175/1520-0469(1975)032<0320:TDOWID>2.0.CO;2.
  17. Klink, K., 1999: Climatological mean and interannual variance of United States surface wind speed, direction and velocity. Int. J. Climatol., 19, 471-488, doi:10.1002/ (SICI)1097-0088(199904)19:5<471::AID-JOC367>3.0.CO;2-X.
  18. Kusaka, H., and H. Fudeyasu, 2017: Review of downslope windstorms in Japan. Wind and Structure., 24, 637-656, doi:10.12989/was.2017.24.6.637.
  19. Lee, J., 2003: A numerical study of the orographic effect of the Taebak mountains on the increase of the downslope wind speed near Gangnung area. J. Environ. Sci., 12, 1245-1254, doi:10.5322/JES.2003.12.12.1245.
  20. Lee, J., J. M. Seo, J.-J. Baik, S.-B. Park, and B.-S. Han, 2020: A numerical study of windstorms in the lee of the taebaek mountains, South Korea: Characteristics and generation mechanisms. Atmosphere, 11, 431, doi:10.3390/atmos11040431.
  21. Lilly, D. K., and J. B. Klemp., 1979: The effects of terrain shape on nonlinear hydrostatic mountain waves. J. Fluid. Mech., 95, Cambridge University Press: 241-261, doi:10.1017/S0022112079001452.
  22. Lin, Y.-L., and T.-A. Wang, 1996: Flow regimes and transient dynamics of two-dimensional stratified flow over an isolated mountain ridge. J. Atmos. Sci., 53, 139-158, doi:10.1175/1520-0469(1996)053<0139:FRATDO>2.0.CO;2.
  23. Park, Y.-J., and Y.-D. Han, 2021: Analysis on the Yeongdong downslope windstorms generation condition verified by observation cases. Atmosphere, 31, 405-420, doi:10.14191/Atmos.2021.31.4.405.
  24. Peterson, E. W., and J. P. Hennessy Jr., 1978: On the use of power laws for estimates of wind power potential. J. Appl. Meteor. Climatol., 17, 390-394, doi:10.1175/1520-0450(1978)017<0390:OTUOPL>2.0.CO;2.
  25. Pryor, S. C., J. T. Schoof, and R. J. Barthelmie, 2005: Empirical downscaling of wind speed probability distributions. J. Geophys. Res. Atmos., 110, D19109, doi:10.1029/2005JD005899.
  26. Richner, H., and P. Hachler, 2013: Understanding and forecasting Alpine foehn. In Mountain weather research and forecasting. Springer., 219-260, doi:10.1007/978-94-007-4098-3_4.
  27. Shestakova, A. A., P. A. Toropov, and T. A. Matveeva, 2020: Climatology of extreme downslope windstorms in the Russian Arctic. Weather Clim. Extrem., 28, 100256, doi:10.1016/j.wace.2020.100256.
  28. Shin, Y., J.-H. Kim, H.-Y. Chun, W. Jang, and S.-W. Son, 2022: Classification of synoptic patterns with mesoscale mechanisms for downslope windstorms in Korea using a self-organizing map. J. Geophys. Res. Atmos., 127, e2021JD035867, doi:10.1029/2021JD035867.
  29. Smith, R. B., 1985: On severe downslope winds. J. Atmos. Sci., 42, 2597-2603. doi:10.1175/1520-0469(1985)042<2597:OSDW>2.0.CO;2.
  30. Smith, R. B., 2019: 100 years of progress on mountain meteorology research. Meteor. Monogr., 59, 20.1-20.73, doi:10.1175/AMSMONOGRAPHS-D-18-0022.1.
  31. Temme, F., J. V. Turton, T. Molg, and T. Sauter, 2020: Flow regimes and fohn types characterize the local climate of Southern Patagonia. Atmosphere, 11, 899, doi:10.3390/atmos11090899.
  32. Tsai, C.-L., K. Kim, Y.-C. Liou, J.-H. Kim, Y. Lee, and G. Lee, 2021: Observational study for strong downslope wind event under fine weather condition during ICEPOP 2018. Atmos. Chem. Phys., doi:10.5194/acp2021-100.
  33. Wan, H., X. L. Wang, and V. R. Swail, 2010: Homogenization and trend analysis of Canadian near-surface wind speeds., J. Climate, 23, 1209-1255, doi:10.1175/2009JCLI3200.1.
  34. Wu, J., J. Zha, D. Zhao, and Q. Yang, 2018: Changes in terrestrial near-surface wind speed and their possible causes: an overview. Climate Dyn, 51, 2039-2078, doi:10.1007/s00382-017-3997-y