• Title/Summary/Keyword: rawinsonde

Search Result 31, Processing Time 0.018 seconds

Data Assimilation Effect of Mobile Rawinsonde Observation using Unified Model Observing System Experiment during the Summer Intensive Observation Period in 2013 (2013년 여름철 집중관측동안 통합모델 관측시스템실험을 이용한 이동형 레윈존데 관측의 자료동화 효과)

  • Lim, Yun-Kyu;Song, Sang-Keun;Han, Sang-Ok
    • Journal of the Korean earth science society
    • /
    • v.35 no.4
    • /
    • pp.215-224
    • /
    • 2014
  • Data assimilation effect of mobile rawinsonde observation was evaluated using Unified Model (UM) with a Three-Dimensional Variational (3DVAR) data assimilation system during the intensive observation program of 2013 summer season (rainy season: 20 June-7 July 2013, heavy rain period: 8 July-30 July 2013). The analysis was performed by two sets of simulation experiments: (1) ConTroL experiment (CTL) with observation data provided by Korea Meteorological Administration (KMA) and (2) Observing System Experiment (OSE) including both KMA and mobile rawinsonde observation data. In the model verification during the rainy season, there were no distinctive differences for 500 hPa geopotential height, 850 hPa air temperature, and 300 hPa wind speed between CTL and OSE simulation due to data limitation (0000 and 1200 UTC only) at stationary rawinsonde stations. In contrast, precipitation verification using the hourly accumulated precipitation data of Automatic Synoptic Observation System (ASOS) showed that Equivalent Threat Score (ETS) of the OSE was improved by about 2% compared with that of the CTL. For cases having a positive effect of the OSE simulation, ETS of the OSE showed a significantly higher improvement (up to 41%) than that of the CTL. This estimation thus suggests that the use of mobile rawinsonde observation data using UM 3DVAR could be reasonable enough to assess the improvement of prediction accuracy.

Comparison of Wind Profiler Wind Measurements with Rawinsonde Data at Bukgangneung (북강릉 지점의 연직바람관측장비 바람자료와 레윈존데 자료의 비교)

  • Kwon, Ju-Hyeong;Kwon, Tae-Yong
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_1
    • /
    • pp.249-265
    • /
    • 2018
  • The Korea Meteorological Administration has been operating wind profiler at 9 stations since the year of 2007. Among these stations, Bukgangneung is the only one that produces regularly both rawinsonde and wind profiler wind measurements at the same time. In this study, wind profiler measurements were compared with rawinsonde wind at Bukgangneung. Unlike most other studies which have used the temporal measurements for several days in summer season, in this study the routine rawinsonde measurments during almost one year (2016) were employed for the accuracy test of the wind. The monthly mean maximum observation height in Bukgangneung shows a large seasonal variation; it was relatively high in summer (4,310 m in July) and low in winter (2,130 m in December). The vertical observation rates at the altitude above these heights were less than 50%. The monthly and vertical wind comparison between rawinsonde and wind profiler shows that absolute bias and RMSE of zonal and meridional wind velocity are mostly less than 1 m/s and less than 2 m/s, respectively. In winter season the RMSE of wind velocity increased to 2~3 m/s. However, at some high altitudes and certain months, large errors were found. It is shown that these errors were related with very weak wind (less than 1 m/s) of wind profiler at 3,500~4,000 m from January to May and dramatic changes of wind the height of 1,500~2,500 m for in April. For Snow events the errors were lower than those for the winter season and for the heavy rain events the errors increased to 3~4 m/s at the height of 4~5 km.

Observation and Understanding of Snowfall Characteristics in the Yeongdong Region (영동 지역에서 강설 특성 관측 및 이해)

  • Kim, Byung-Gon;Kim, Mi-Gyeong;Kwon, Tae-Young;Park, Gyun-Myung;Han, Yun-Deok;Kim, Seung-Bum;Chang, Ki-Ho
    • Atmosphere
    • /
    • v.31 no.4
    • /
    • pp.461-472
    • /
    • 2021
  • Yeongdong has frequently suffered from severe snowstorms, which generally give rise to societal and economic damages to the region in winter. In order to understand its mechanism, there has been a long-term measurement campaign, based on the rawinsonde measurements for every snowfall event at Gangneung since 2014. The previous observations showed that a typical heavy snowfall is generally accompanied with northerly or northeasterly flow below the snow clouds, generated by cold air outbreak over the relatively warmer East Sea. An intensive and multi-institutional measurement campaign has been launched in 2019 mainly in collaboration with Gangwon Regional Office of Meteorology and National Institute of Meteorological Studies of Korean Meteorological Administration, with a special emphasis on winter snowfall and spring windstorm altogether. The experiment spanned largely from February to April with comprehensive measurements of frequent rawinsonde measurements at a super site (Gangneung) with continuous remote sensings of wind profiler, microwave radiometers and weather radar etc. Additional measurements were added to the campaign, such as aircraft dropsonde measurements and shipboard rawinsonde soundings. One of the fruitful outcomes is, so far, to identify a couple of cold air damming occurrences, featuring lowest temperature below 1 km, which hamper the convergence zone and snow clouds from penetrating inland, and eventually make it harder to forecast snowfall in terms of its location and timing. This kind of comprehensive observation campaign with continuous remote sensings and intensive additional measurement platforms should be conducted to understand various orographic precipitation in the complex terrain like Yeongdong.

Trends of Stability Indices and Environmental Parameters Derived from the Rawinsonde Data over South Korea

  • Eom, Hyo-Sik;Suh, Myoung-Seok
    • Journal of the Korean earth science society
    • /
    • v.32 no.5
    • /
    • pp.461-473
    • /
    • 2011
  • In this paper, trends of the widely used stability indices (SIs) and environmental parameters (EPs) were examined by using the 30-year routine rawinsonde data observed in three upper air observatories (Osan, Gwangju and Pohang) over South Korea. To take into account of the contribution of water vapor to a parcel density, we applied the virtual temperature correction in calculating the SIs and EPs. The trends of SIs and EPs indicated significant increases of temperature and moisture contents, especially at the low-to-mid troposphere during the last 10 years. The warming trend in the lower troposphere shows about 3 times greater than that of the global average (+0.10- $+0.20^{\circ}C$/10 years), whereas the cooling trend of lower stratosphere demonstrates a similar trend with the global average (-0.33- $-0.60^{\circ}C$/10 years). The vertical stability is clearly reduced due to the unsymmetrical change of atmospheric elements. The unstabilizing trend with the increased moisture contents gradually changed the atmospheric environment in South Korea into the conditions favorable for the occurrence of severe weather or intensifications of such events. These trends are consistent with the recent observations, which showed clear increase in the intensity and frequency of heavy rainfalls.

A Case Study of Snowfall Event over Yeongdong Region on March 1-2, 2021 (2021년 3월 1-2일 영동지역 강설 사례 연구)

  • Bo-Yeong Ahn;Byunghwan Lim
    • Journal of the Korean earth science society
    • /
    • v.44 no.2
    • /
    • pp.119-134
    • /
    • 2023
  • The synoptic, thermodynamic, and dynamic characteristics of a snowfall event that occurred in the Yeongdong region on March 1-2, 2021, were investigated. Surface weather charts, ERA5 reanalysis data, rawinsonde data, GK-2A satellite data, and WISSDOM data were used for analysis. The snow depth, exceeding 10 cm, was observed at four weather stations during the analysis period. The maximum snow depth (37.4 cm) occurred at Bukgangneung. According to the analysis of the weather charts, old and dry air was trapped within relatively warm, humid air in the upper atmosphere over the East Sea and adjacent Yeongdong region. This caused unstable atmospheric conditions that led to developing convective clouds and snowfall over Bukgangneung. In particular, based on the thermodynamic and kinematic vertical analysis, we suggest that strong winds attributable to the vertical gradient of potential temperature in the low layer and the development of convective instability due to cold advection played a significant role in the occurrence of snowfall in the Yeongdong region. These results were confirmed from the vertical analysis of the rawinsonde data.

A Study on Filling the Spatio-temporal Observation Gaps in the Lower Atmosphere by Guaranteeing the Accuracy of Wind Observation Data from a Meteorological Drone (기상드론 바람관측자료의 정확도 확보를 통한 대기하층 시공간 관측공백 해소 연구)

  • Seung-Hyeop Lee;Mi Eun Park;Hye-Rim Jeon;Mir Park
    • Atmosphere
    • /
    • v.33 no.5
    • /
    • pp.441-456
    • /
    • 2023
  • The mobile observation method, in which a meteorological drone observes while ascending, can observe the vertical profile of wind at 1 m-interval. In addition, since continuous flights are possible at time intervals of less than 30 minutes, high-resolution observation data can be obtained both spatially and temporally. In this study, we verify the accuracy of mobile observation data from meteorological drone (drone) and fill the spatio-temporal observation gaps in the lower atmosphere. To verify the accuracy of mobile observation data observed by drone, it was compared with rawinsonde observation data. The correlation coefficients between two equipment for a wind speed and direction were 0.89 and 0.91, and the root mean square errors were 0.7 m s-1 and 20.93°. Therefore, it was judged that the drone was suitable for observing vertical profile of the wind using mobile observation method. In addition, we attempted to resolve the observation gaps in the lower atmosphere. First, the vertical observation gaps of the wind profiler between the ground and the 150 m altitude could be resolved by wind observation data using the drone. Secondly, the temporal observation gaps between 3-hour interval in the rawinsonde was resolved through a drone observation case conducted in Taean-gun, Chungcheongnam-do on October 13, 2022. In this case, the drone mobile observation data every 30-minute intervals could observe the low-level jet more detail than the rawinsonde observation data. These results show that the mobile observation data of the drone can be used to fill the spatio-temporal observation gaps in the lower atmosphere.

Analysis of Asian Dust Transportation Time and Wind Farm in Baengnyeongdo Island and the Metropolitan Area (백령도와 수도권의 황사 수송 시간과 바람장 분석)

  • Jo, Won Gi;Kang, Dong-hwan;Park, Gyeong-Deok;Yang, Minjune
    • Journal of Environmental Science International
    • /
    • v.31 no.6
    • /
    • pp.525-533
    • /
    • 2022
  • Baengnyeongdo, located within the Asian dust stream, is an ideal place to analyze Asian dust moving into the West Sea due to its low emission of artificial pollutants. Baengnyeongdo is being used to analyze the vertical distribution of dust from the lower atmosphere to the upper layer through remote observation. This study compared the ground concentration of dust between Baengnyeongdo and the metropolitan area, estimated the lag time of transport of Asian dust from Baengnyeongdo to the metropolitan area, and examined the homogeneity of upper winds using the rawinsonde method. The results showed that the cross correlation coefficient was higher and the lag time was shorter for each observation station when the distance from Baengnyeongdo was shorter. The upper wind at Baengnyeongdo is dominated by the west/northwest wind. It is the basis for the correlation of dust concentration between Baengnyeongdo and the metropolitan area located to the east. In the future, upper wind data and Asian dust concentration data over the West Sea and Baengnyeongdo are expected to contribute to research related to the movement and prediction of Asian dust and preparation for Asian dust in the metropolitan area.

A Study on the Predictability of Moist Convection during Summer based on CAPE and CIN (대류가용잠재에너지와 대류억제도에 입각한 여름철 습윤 대류 예측성에 대한 연구)

  • Doyeol Maeng;Songlak Kang
    • Journal of the Korean earth science society
    • /
    • v.44 no.6
    • /
    • pp.540-556
    • /
    • 2023
  • This study analyzed rawinsonde soundings observed during the summer and early fall seasons (June, July, August and September) on the Korean peninsula to examine the utility of the Convective Available Potential Energy (CAPE) and Convective Inhibition (CIN) in predicting the occurrence of deep moist convection and precipitation. Rawinsonde soundings are categorized into two groups based on thermodynamic criteria: high CAPE and low CIN represent a high potential for deep moist convection; low CAPE and high CIN indicate conditions unfavorable for deep convection. A statistical hypothesis test is conducted to determine whether the two groups are significantly different in terms of 12-hour cumulative precipitation, 12-hour mean cloud base, and 12-hour mean mid-level cloud cover. The results, in the case of no-precipitation, reveal statistically significant differences between the two groups, except for the 12-hour mean cloud base during the 21:01-09:00 KST time period. This suggests that the group characterized by high CAPE and low CIN is more conducive to the occurrence of deep moist convection and precipitation than the group with low CAPE and high CIN.

A Case Study on the Heat budget of the Marine Atmosphere Boundary Layer due to inflow of cloud on observation at Ulleungdo (울릉도에서 구름 유입시 관측한 해양대기경계층의 열수지에 관한 사례연구)

  • Kim, Hee-Jong;Yoon, Ill-Hee;Kwon, Byung-Hyuk
    • Journal of the Korean earth science society
    • /
    • v.25 no.7
    • /
    • pp.629-636
    • /
    • 2004
  • In order to study developments of the marine atmosphere boundary layer in cloud incoming, important parameters like heat advection, surface layer heat flux, and radiation energy were estimated using the rawinsonde, AWS data, satellite images, and buoy data which was installed at the East Sea. We explained the variation and the development of mixed layer in terms of surface layer heat flux and long wave radiation under the cloudy sky. The heat flux was obtained by means of the bulk method. Conservation of heat was analysed by heat budget equation, which was consist of buoy data in the East sea, and sounding data at Ulleungdo and at Pohang. During the inflow of cloud, radiative cooling at the surface after was suppressed and long wave radiation from cloud played a role of warming. The surface layer temperature was also remained warm by influence of warm advection from south-easterly direction. The air temperature in night was increased, as a result, mixed layer was not destroyed and The nocturnal boundary layer was composed of the mixed layer and the residual layer.

Analysis of the Relationship of Cold Air Damming with Snowfall in the Yeongdong Region (영동 지역 한기 축적과 강설의 연관성 분석)

  • Kim, Mi-Gyeong;Kim, Byung-Gon;Eun, Seung-Hee;Chae, Yu-Jin;Jeong, Ji-Hoon;Choi, Young-Gil;Park, Gyun-Myeong
    • Atmosphere
    • /
    • v.31 no.4
    • /
    • pp.421-431
    • /
    • 2021
  • The Yeongdong region is frequently vulnerable to heavy snowfall in winter in terms of societal and economical damages. By virtue of a lot of previous efforts, snowfall forecast has been significantly improved, but the performance of light snowfall forecast is still poor since it is very conducive to synoptic and mesoscale interactions, largely attributable to Taeback mountains and East Sea effects. An intensive observation has been made in cooperation with Gangwon Regional Meteorological Office and National Institute of Meteorological Studies in winter seasons since 2019. Two distinctive Cold Air Damming (CAD) events (14 February 2019 and 6 February 2020) were observed for two years when the snowfall forecast was wrong specifically in its location and timing. For two CAD events, lower-level temperature below 2 km ranged to lowest limit in comparisons to those of the previous 6-years (2014~2019) rawinsonde soundings, along with the stronger inversion strength (> 2.0℃) and thicker inversion depth (> 700 m). Further, the northwesterly was predominant within the CAD layer, whereas the weak easterly wind was exhibited above the CAD layer. For the CAD events, strong cold air accumulation along the east side of Taeback Mountains appeared to prevent snow cloud and convergence zone from penetrating into the Yeongdong region. We need to investigate the influence of CAD on snowfall in the Yeongdong region using continuous intensive observation and modeling studies altogether. In addition, the effect of synoptic and mesoscale interactions on snowfall, such as nighttime drainage wind and land breeze, should be also examined.