Acknowledgement
This research was funded by the National Natural Science Foundation of China (grant numbers: 52274167), the Natural Science Foundation of Hunan Province (grant numbers: 2022JJ40374, 2023JJ30516), the Research Foundation of Education Bureau of Hunan Province (grant numbers: 22B0410, 20B496), the Hengyang City Science and Technology Program Project Funding (grant numbers: 202150063769), the Hunan Province's technology research project "Revealing the List and Taking Command" (grant numbers: 2021SK1050), the Postgraduate Scientific Research Innovation Project of Hunan Province (grant numbers: CX20230948).
References
- G. Asadollahfardi, M.S. Sarmadi, M. Rezaee, A. Khodadadi-Darban, M. Yazdani, J. M. Paz-Garcia, Comparison of different extracting agents for the recovery of Pb and Zn through electrokinetic remediation of mine tailings, J. Environ. Manag. 279 (2021), 111728.
- F. Wang, M. Zhou, C. Chen, Z. Yuan, X. Geng, S. Yang, Solidification of uranium tailings using alkali-activated slag mixed with natural zeolite, Nucl. Eng. Technol. 55 (2) (2023) 523-529. https://doi.org/10.1016/j.net.2022.10.015
- P. Wang, Z. Sun, Y. Hu, H. Cheng, Leaching of heavy metals from abandoned mine tailings brought by precipitation and the associated environmental impact, Sci. Total Environ. 695 (2019), 133893.
- H. Porter, N.K. Dhami, A. Mukherjee, Synergistic chemical and microbial cementation for stabilization of aggregates, Cement Concr. Compos. 83 (2017) 160-170. https://doi.org/10.1016/j.cemconcomp.2017.07.015
- R. Sun, Y. Gao, Y. Yang, Leaching of heavy metals from lead-zinc mine tailings and the subsequent migration and transformation characteristics in paddy soil, Chemosphere 291 (2022), 132792.
- Z. Wang, M. Du, H. Fang, C. Zhang, M. Li, M. Shi, Influence of different corrosion environments on mechanical properties of a roadbed rehabilitation polyurethane grouting material under uniaxial compression, Construct. Build. Mater. 301 (2021), 124092.
- A. Kantzas, L. Stehmeier, D. Marentette, F. Ferris, K. Jha, F. Maurits, A Novel Method of Sand Consolidation through Bacteriogenic Mineral Plugging, Annual Technical Meeting, OnePetro, 1992.
- S.P. Bhutange, M. Latkar, T. Chakrabarti, Studies on efficacy of biocementation of cement mortar using soil extract, J. Clean. Prod. 274 (2020), 122687.
- S.M. Fattahi, A. Soroush, N. Huang, Biocementation control of sand against wind erosion, J. Geotech. Geoenviron. Eng. 146 (6) (2020), 04020045.
- M.G. Sohail, Z. Al Disi, N. Zouari, N. Al Nuaimi, R. Kahraman, B. Gencturk, D. F. Rodrigues, Y. Yildirim, Bio self-healing concrete using MICP by an indigenous Bacillus cereus strain isolated from Qatari soil, Construct. Build. Mater. 328 (2022), 126943.
- A. Rajasekar, S. Wilkinson, C.K. Moy, MICP as a potential sustainable technique to treat or entrap contaminants in the natural environment: a review, Environmental Science and Ecotechnology 6 (2021), 100096.
- A.I. Omoregie, G. Khoshdelnezamiha, N. Senian, D.E.L. Ong, P.M. Nissom, Experimental optimisation of various cultural conditions on urease activity for isolated Sporosarcina pasteurii strains and evaluation of their biocement potentials, Ecol. Eng. 109 (2017) 65-75. https://doi.org/10.1016/j.ecoleng.2017.09.012
- R. Cardoso, I. Pires, S.O. Duarte, G.A. Monteiro, Effects of clay's chemical interactions on biocementation, Appl. Clay Sci. 156 (2018) 96-103. https://doi.org/10.1016/j.clay.2018.01.035
- V.S. Whiffin, L.A. Van Paassen, M.P. Harkes, Microbial carbonate precipitation as a soil improvement technique, Geomicrobiol. J. 24 (5) (2007) 417-423. https://doi.org/10.1080/01490450701436505
- L. Cheng, R. Cord-Ruwisch, In situ soil cementation with ureolytic bacteria by surface percolation, Ecol. Eng. 42 (2012) 64-72. https://doi.org/10.1016/j.ecoleng.2012.01.013
- M.P. Harkes, L.A. Van Paassen, J.L. Booster, V.S. Whiffin, M.C. van Loosdrecht, Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement, Ecol. Eng. 36 (2) (2010) 112-117. https://doi.org/10.1016/j.ecoleng.2009.01.004
- C. Song, C. Wang, D. Elsworth, S. Zhi, Compressive strength of MICP-treated silica sand with different particle morphologies and gradings, Geomicrobiol. J. 39 (2) (2022) 148-154. https://doi.org/10.1080/01490451.2021.2020936
- L. Cheng, M.A. Shahin, J. Chu, Soil bio-cementation using a new one-phase low-pH injection method, Acta Geotechnica 14 (2019) 615-626. https://doi.org/10.1007/s11440-018-0738-2
- D. Gray, Electrochemical hardening of clay soils, Geotechnique 20 (1) (1970) 81-93. https://doi.org/10.1680/geot.1970.20.1.81
- L. Bjerrum, J. Moum, O. Eide, Application of electro-osmosis to a foundation problem in a Norwegian quick clay, Geotechnique 17 (3) (1967) 214-235. https://doi.org/10.1680/geot.1967.17.3.214
- C.-Y. Ou, S.-C. Chien, Y.-G. Wang, On the enhancement of electroosmotic soil improvement by the injection of saline solutions, Appl. Clay Sci. 44 (1-2) (2009) 130-136. https://doi.org/10.1016/j.clay.2008.12.014
- A.N. Alshawabkeh, T.C. Sheahan, Stabilizing fine-grained soils by phosphate electrogrouting, Transport. Res. Rec. 1787 (1) (2002) 53-60. https://doi.org/10.3141/1787-06
- N. Otsuki, W. Yodsudjai, T. Nishida, Feasibility study on soil improvement using electrochemical technique, Construct. Build. Mater. 21 (5) (2007) 1046-1051. https://doi.org/10.1016/j.conbuildmat.2006.02.001
- R. Xiao, B. Liang, F. Wu, L. Huang, Z. Lai, Biocementation of coral sand under seawater environment and an improved three-stage biogrouting approach, Construct. Build. Mater. 362 (2023), 129758.
- Z.J. Zhang, K.W. Tong, L. Hu, Q. Yu, L.L. Wu, Experimental study on solidification of tailings by MICP under the regulation of organic matrix, Construct. Build. Mater. 265 (2020), 120303.
- V.S. Whiffin, Microbial CaCO3 Precipitation for the Production of Biocement, Murdoch University, 2004.