Acknowledgement
This work is supported by National Natural Science Foundation of China (No.12005160).
References
- W.S. Yang, Fast reactor physics and computational methods, Nucl. Eng. Technol. 44 (2) (2012) 177-198, https://doi.org/10.5516/net.01.2012.504.
- C. Lee, W.S. Yang, MC2-3: multigroup cross section generation code for fast reactor analysis, Nucl. Sci. Eng. 187 (3) (2017) 268-290, https://doi.org/10.1080/00295639.2017.1320893.
- J.M. Ruggieri, J. Tommasi, J.F. Lebrat, et al., Eranos 2.1: international code system for GEN IV fast reactor analysis, Proceedings of ICAPP (2006) 2432-2439.
- G. Rimpault, D. Plisson, J. Tommasi, et al., The ERANOS code and data system for fast reactor neutronic analyses, in: PHYSOR 2002-International Conference on the New Frontiers of Nuclear Technology: Reactor Physics, Safety and High-Performance Computing, 2002.
- H. Guo, E. Garcia, B. Faure, et al., Advanced method for neutronic simulation of control rods in sodium fast reactors: numerical and experimental validation, Ann. Nucl. Energy 129 (2019) 90-100, https://doi.org/10.1016/j.anucene.2019.01.042.
- B. Roque, A. Rizzo, V. Pascal, et al., Experimental validation of the new code package APOLLO3-SFR against ZPPR-10A experiment for critical and voided configurations//PHYSOR 2016, in: International Conference on the Advances in Reactor Physics Unifying Theory and Experiments in the 21st Century, 2016.
- T. Hazama, G. Chiba, K. Sugino, Development of a fine and ultra-fine group cell calculation code SLAROM-UF for fast reactor analyses, J. Nucl. Sci. Technol. 43 (8) (2006) 908-918, https://doi.org/10.1080/18811248.2006.9711176 ([LinkOut]).
- Bae M H, Choi Y W, Shin A, et al. Preliminary Development of SFR Nuclear Code System for Regulatory Evaluation.//Proceedings of the KNS 2016 Autumn Meeting.
- C. Lim, H.G. Joo, W.S. Yang, Development of a fast reactor multigroup cross section generation code EXUS-F capable of direct processing of evaluated nuclear data files, Nucl. Eng. Technol. 50 (3) (2018) 340-355, https://doi.org/10.1016/j.net.2018.01.013.
- Xiaoyan Yang, Hong Yu, Zhi Gang, et al., Loading scheme research on the first criticality of China experimental fast reactor, Atomic Energy Sci. Technol. 47 (S1) (2013) 58-61, https://doi.org/10.7538/yzk.2013.47.S0.0058 (In Chinese).
- K. Hu, X.B. Ma, T. Zhang, et al., MGGC2.0: a preprocessing code for the multi-group cross section of the fast reactor with ultrafine group library, Nucl. Eng. Technol. 55 (8) (2023) 2785-2796, https://doi.org/10.1016/j.net.2023.05.005.
- T. Zhang, Z. Li, Variational nodal methods for neutron transport: 40 years in review, Nucl. Eng. Technol. (2022 Apr 27) 3181-3204. https://doi.org/10.1016/j.net.2022.04.012
- T. Zhang, W. Xiao, H. Yin, Q. Sun, X. Liu, VITAS: a multi-purpose simulation code for the solution of neutron transport problems based on variational nodal methods, Ann. Nucl. Energy (2022 July 178), 109335.
- X. Du, L. Cao, Y. Zheng, et al., A hybrid method to generate few-group cross sections for fast reactor analysis, J. Nucl. Sci. Technol. 55 (8) (2018) 931-944, https://doi.org/10.1080/00223131.2018.1452650.
- S.C. Zhou, H.C. Wu, L. Cao, et al., LAVENDER: a steady-state core analysis code for design studies of accelerator driven subcritical reactors, Nucl. Eng. Des. 278 (2014) 434-444, https://doi.org/10.1016/j.nucengdes.2014.07.027.
- M. He, H. Wu, Y. Zheng, et al., Beam transient analyses of Accelerator Driven Subcritical Reactors based on neutron transport method, Nucl. Eng. Des. 295 (2015) 489-499, https://doi.org/10.1016/j.nucengdes.2015.10.021.
- Y. Zheng, L. Qiao, Z. Zhai, et al., SARAX: a new code for fast reactor analysis part II: verification, validation and uncertainty quantification, Nucl. Eng. Des. 331 (2018) 41-53, https://doi.org/10.1016/j.nucengdes.2018.02.033.
- X. Du, J. Choe, T. Tran, et al., Neutronic simulation of China Experimental Fast Reactor start-up tests. Part I: SARAX code deterministic calculation, Ann. Nucl. Energy 136 (2020), 107046, https://doi.org/10.1016/j.anucene.2019.107046.
- H.D.L. Mencarini, C.J. King, Fuel geometry options for a moderated low-enriched uranium kilowatt-class space nuclear reactor, Nucl. Eng. Des. 340 (2018), https://doi.org/10.1016/j.nucengdes.2018.09.017.
- B.K. Jeon, W.S. Yang, Y.S. Jung, et al., in: Extension of MC2-3 for Generation of Multigroup Cross Sections in Thermal Energy range//Proceedings of M&C 2017 Conference, Jeju, Korea, 2017, https://doi.org/10.1016/B978-0-08-019610-7.50043-9.
- K. Kim, M.L. Williams, A.M. Holcomb, et al., The SCALE/AMPX multigroup cross section processing for fast reactor analysis, Ann. Nucl. Energy 132 (2019) 161-171, https://doi.org/10.1016/j.anucene.2019.04.034.
- L. Wei, Y. Zheng, X. Du, et al., Extension of SARAX code system for reactors with intermediate spectrum, Nucl. Eng. Des. (2020) 370, https://doi.org/10.1016/j.nucengdes.2020.110883.
- X. DU, Few-Group Cross Section Generation Method for Fast Reactor Analysis and its Verification and Validation. Doctoral Dissertation, Xi 'an Jiaotong University, Xi 'an, 2018 (In Chinese).
- J.B. Briggs, L. Scott, A. Nouri, The international criticality safety benchmark evaluation project, Nucl. Sci. Eng. 145 (1) (2003) 1-10, https://doi.org/10.13182/nse03-14.
- C. Lee, Y. Jung, W. Yang, MC2-3: Multigroup Cross Section Generation Code for Fast Reactor Analysis Nuclear, Argonne National Lab.(ANL), Argonne, IL (United States), 2018.
- C. Perey, F. Perey, J. Harvey, et al., 56Fe Resonance Parameters for Neutron Energies up to 850 keV, Oak Ridge National Lab, 1990, https://doi.org/10.2172/6028649.
- M. Chadwick, P. Oblozinsky, M. Herman, et al., ENDF/B-VII.0: next generation evaluated nuclear data library for nuclear science and technology, Nucl. Data Sheets 107 (12) (2006), https://doi.org/10.1016/j.nds.2006.11.001.
- T. Zu, J. Xu, Y. Tang, et al., NECP-Atlas: a new nuclear data processing code, Ann. Nucl. Energy 123 (2019), https://doi.org/10.1016/j.anucene.2018.09.016.
- Q. He, Q. Zheng, J. Li, et al., NECP-MCX: a hybrid Monte-Carlo-Deterministic particle-transport code for the simulation of deep-penetration problems, Ann. Nucl. Energy (2021) 151, https://doi.org/10.1016/j.anucene.2020.107978.
- Q. Zhang, H. Wu, L. Cao, Y. Zheng, An improved resonance self-shielding calculation method based on equivalence theory, Nucl. Sci. Eng. 179 (2015) 233-252, https://doi.org/10.13182/NSE13-108.