DOI QR코드

DOI QR Code

우리나라 자포니카 벼 품종의 조기이앙 한계온도 분석

Critical Temperature for Early Marginal Transplanting of Japonica Rice in Korea

  • 양운호 (농촌진흥청 국립식량과학원 중부작물부 재배환경과) ;
  • 강신구 (농촌진흥청 국립식량과학원 중부작물부 재배환경과) ;
  • 이대우 (농촌진흥청 국립식량과학원 중부작물부 재배환경과) ;
  • 채미진 (농촌진흥청 국립식량과학원 중부작물부 재배환경과)
  • Woonho Yang (Crop Cultivation & Environment Research Division, Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Shingu Kang (Crop Cultivation & Environment Research Division, Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Dae-Woo Lee (Crop Cultivation & Environment Research Division, Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Mi-Jin Chae (Crop Cultivation & Environment Research Division, Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration)
  • 투고 : 2023.10.18
  • 심사 : 2023.11.07
  • 발행 : 2023.12.01

초록

현시대 우리나라 자포니카 벼 품종의 조기이앙 한계온도를 밝히기 위하여, 2020~2023년 시험포장, 2020~2021년 포트육묘상자, 2022~2023년 인공기상실에서 수행한 연구 결과는 다음과 같다. 1. 포장시험에서 출수 조기화 효과가 나타나는 온도는 이앙부터 10일간 평균기온 12.0~12.4℃, 출수 조기화 효과는 없지만 생장 증가 효과가 나타나는 온도는 11.4~11.6℃로 분석되었으며, 2020~2021년 이앙부터 10일간 평균기온의 출수 조기화와 출수기 생장 증가 효과는 3 품종에서 동일하였다. 2. 10일 후 이앙 대비 최초 신근 발생 날짜는 이앙부터 10일간 평균기온 9.1℃ 이상, 이앙 후 엽록소 함량 증가 개시 날짜는 10.5℃ 이상, 최초 분얼 발생 날짜는 11.6℃ 이상에서 빨랐다. 3. 포트육묘상자 시험과 포장시험에서 나타난 최초 신근 발생, 엽록소 함량 증가 개시, 최초 분얼 발생 시기의 조만은 이앙시기 비교 조합에 따라 다른 양상으로 나타났으며, 최초 분얼 발생 시기의 조만이 조기이앙 한계온도 평가를 위한 생육 초기 지표로 실용적이었다. 4. 일교차 10℃ 조건에서 신근은 평균기온 10℃에서도 대부분의 개체에서 발생하였고, 식물체 고사 현상은 평균 기온 10℃에서도 나타나지 않았으며, 처리 당시 대비 처리 후 30일의 건물중은 10~11℃ 이상에서 증가하였고, 처리 후 30일 엽록소 함량은 11~12℃에서 처리 당시 수준이나 그 이상으로 높았다. 5. 항온 조건의 동일 평균기온에 비하여 일교차 10℃의 변온 조건에서는 신근 발생 속도가 빠르고 비율이 높았으며, 고사 식물체 비율이 낮고, 처리 후 30일 건물중과 엽록소 함량이 높아, 낮에 높아진 온도의 생장 촉진 효과가 밤에 낮아진 온도의 생장 억제 효과보다 크게 나타났다. 6. 종합적으로, 우리나라 자포니카 벼 품종의 출수 조기화에 효과적인 조기이앙 한계온도는 이앙부터 10일간 평균기온 12.0~12.4℃ 사이, 출수 조기화 효과는 없지만 출수기 생장 증가에 효과적인 한계온도는 11.4~11.6℃ 사이였고, 분얼 발생 시기의 조만이 생육초기 조기이앙 한계온도의 평가지표로 실용적이었으며, 기온 처리 시험 결과는 포장시험 결과에 대한 분석을 뒷받침하였다.

We investigated critical temperature for early marginal transplanting (CT-EMT) of the contemporary japonica rice varieties in Korea through the field, pot seedling tray, and the phytotron experiments during 2020 to 2023. The lowest mean temperature for 10 days from transplanting (MT-10DFT) that resulted in earlier heading date was 12.4℃ and the highest MT-10DFT that did not show the earlier heading date was 12.0℃ in the field study when the MT-10DFT varied by changing transplanting date. The lowest MT-10DFT that induced the increased biomass but not the earlier heading date was 11.6℃ and the highest MT-10DFT that showed neither the increased biomass nor the earlier heading date was 11.4℃. Compared to the 10-day later transplanting, the dates of the first root development, initiation of the chlorophyll recovery, and the first tiller development were earlier when the MT-10DFT was 9.1℃ or higher, 10.5℃ or higher, and 11.6℃ or higher, respectively, in the pot seedling tray and field experiments. The earliness of the first tiller development was a practical index for the estimation of CT-EMT during the early growth stage of rice. The response of transplanted rice to temperature treatments with the diurnal change of 10℃ in the phytotron study was similar to that shown in the field study. The data shown for constant temperature without a diurnal change revealed that the extent of positive effects of high temperature at day-time was greater than the extent of negative effects of low temperature at night-time on the early growth of transplanted rice. It was concluded that the critical MT-10DFT for early marginal transplanting of japonica rice in the temperate environments was between 11.4 to 11.6℃ based on the plant growth and between 12.0 to 12.4℃ based on the plant development.

키워드

과제정보

본 논문은 농촌진흥청 연구사업(연구개발과제명 : 기후 변화 대응 북한지역 식량작물 재배적지 선정, 과제번호 : RS-2020-RD009242)의 지원으로 이루어진 것임

참고문헌

  1. Arnon, A. N. 1967. Method of extraction of chlorophyll in the plants. Agron. J. 23 : 112-121.
  2. Ebata, M. 1990. Effect of heat unit summation and base temperature on the development of rice plant. II. On heading, flowering, kernel development and maturing of rice. Japanese J. Crop Sci. 59(2) : 233-238. https://doi.org/10.1626/jcs.59.233
  3. Kim, D.-S., J.-C. Shin, K.-J. Choi, C.-K. Lee, and J.-K. Kim. 2003. Varietal characteristics of kernel growth of rice influenced by different temperature regimes during grain filling. Korean J. Crop Sci. 48(5) : 397-401.
  4. KMA (Korea Meteorological Administration). 2023. http://data.kma.go.kr/cmmn/main.do. Last accessed on August 30, 2023.
  5. Lee, E.-W. 1986. Rice cropping (4th ed.). Hyangmoonsa. pp. 111-112.
  6. Lee, H., W. Hwang, J. Jeong, S. Yang, N. Jeong, C. Lee, and M. Choi. 2021. Physiological causes of transplantation shock on rice growth inhibition and delayed heading. Scientific Report. 11(1) : 16818.
  7. Lee, J. T., K. M. Shim, H. S. Bang, M. H. Kim, K. K. Kang, Y. E. Na, M. S. Han, and D. B. Lee. 2010. An analysis of changes in rice growth and growth period using climate tables of 1960s (1931~1960) and 2000s (1971~2000). Korean J. Soil Sci. Fert. 43(6) : 1018-1023.
  8. Lee, J. T., Y. S. Jung, and I. S. Ryu. 1983. A probability method to determine rice cropping period based on temperature. Korean J. Crop Sci. 28(3) : 285-290.
  9. RDA (Rural Development Administration). 2015. Quality Rice Production Technologies. pp. 126-179.
  10. Yang, W., K.-S. Kwak, K.-J. Choi, T.-S. Park, and J.-C. Shin. 2007. Overview on the climate change and rice in Korea. In the "International Workshop on Cool Rice for a Warmer World", International Rice Research Institute and Huazhong Agricultural University, 26-30 March 2007. Wuhan, China. pp. 48-50.
  11. Yang, W., S. Kang, J.-S. Choi, J.-H. Park, and S. Kim. 2020. Optimum grain filling temperature for yield improvement of rice varieties originated from high-altitude areas. Korean J. Crop Sci. 65(3) : 182-191.
  12. Yoshida, S. 1981. Fundamentals of Rice Crop Science. International Rice Research Institute. p. 269.