DOI QR코드

DOI QR Code

Impaired Autophagic Flux in Glucose-Deprived Cells: An Outcome of Lysosomal Acidification Failure Exacerbated by Mitophagy Dysfunction

  • 투고 : 2023.07.29
  • 심사 : 2023.08.29
  • 발행 : 2023.11.30

초록

Autophagy dysfunction is associated with human diseases and conditions including neurodegenerative diseases, metabolic issues, and chronic infections. Additionally, the decline in autophagic activity contributes to tissue and organ dysfunction and aging-related diseases. Several factors, such as down-regulation of autophagy components and activators, oxidative damage, microinflammation, and impaired autophagy flux, are linked to autophagy decline. An autophagy flux impairment (AFI) has been implicated in neurological disorders and in certain other pathological conditions. Here, to enhance our understanding of AFI, we conducted a comprehensive literature review of findings derived from two well-studied cellular stress models: glucose deprivation and replicative senescence. Glucose deprivation is a condition in which cells heavily rely on oxidative phosphorylation for ATP generation. Autophagy is activated, but its flux is hindered at the autolysis step, primarily due to an impairment of lysosomal acidity. Cells undergoing replicative senescence also experience AFI, which is also known to be caused by lysosomal acidity failure. Both glucose deprivation and replicative senescence elevate levels of reactive oxygen species (ROS), affecting lysosomal acidification. Mitochondrial alterations play a crucial role in elevating ROS generation and reducing lysosomal acidity, highlighting their association with autophagy dysfunction and disease conditions. This paper delves into the underlying molecular and cellular pathways of AFI in glucose-deprived cells, providing insights into potential strategies for managing AFI that is driven by lysosomal acidity failure. Furthermore, the investigation on the roles of mitochondrial dysfunction sheds light on the potential effectiveness of modulating mitochondrial function to overcome AFI, offering new possibilities for therapeutic interventions.

키워드

과제정보

This work was supported by the Basic Study and Interdisciplinary R&D Foundation Fund from the University of Seoul (2021-2022) granted to E.S.H.

참고문헌

  1. Ahmad, I.M., Aykin-Burns, N., Sim, J.E., Walsh, S.A., Higashikubo, R., Buettner, G.R., Venkataraman, S., Mackey, M.A., Flanagan, S.W., Oberley, L.W., et al. (2005). Mitochondrial O2*- and H2O2 mediate glucose deprivation-induced stress in human cancer cells. J. Biol. Chem. 280, 4254-4263.  https://doi.org/10.1074/jbc.M411662200
  2. Alexander, A. and Walker, C.L. (2010). Differential localization of ATM is correlated with activation of distinct downstream signaling pathways. Cell Cycle 9, 3685-3686.  https://doi.org/10.4161/cc.9.18.13253
  3. Alzamora, R., Thali, R.F., Gong, F., Smolak, C., Li, H., Baty, C.J., Bertrand, C.A., Auchli, Y., Brunisholz, R.A., Neumann, D., et al. (2010). PKA regulates vacuolar H+-ATPase localization and activity via direct phosphorylation of the a subunit in kidney cells. J. Biol. Chem. 285, 24676-24685.  https://doi.org/10.1074/jbc.M110.106278
  4. Aman, Y., Schmauck-Medina, T., Hansen, M., Morimoto, R.I., Simon, A.K., Bjedov, I., Palikaras, K., Simonsen, A., Johansen, T., Tavernarakis, N., et al. (2021). Autophagy in healthy aging and disease. Nat. Aging 1, 634-650.  https://doi.org/10.1038/s43587-021-00098-4
  5. Ashrafi, G. and Schwarz, T.L. (2013). The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ. 20, 31-42.  https://doi.org/10.1038/cdd.2012.81
  6. Brenmoehl, J. and Hoeflich, A. (2013). Dual control of mitochondrial biogenesis by sirtuin 1 and sirtuin 3. Mitochondrion 13, 755-761.  https://doi.org/10.1016/j.mito.2013.04.002
  7. Buzzai, M., Bauer, D.E., Jones, R.G., Deberardinis, R.J., Hatzivassiliou, G., Elstrom, R.L., and Thompson, C.B. (2005). The glucose dependence of Akttransformed cells can be reversed by pharmacologic activation of fatty acid beta-oxidation. Oncogene 24, 4165-4173.  https://doi.org/10.1038/sj.onc.1208622
  8. Chan, C.Y. and Parra, K.J. (2014). Yeast phosphofructokinase-1 subunit Pfk2p is necessary for pH homeostasis and glucose-dependent vacuolar ATPase reassembly. J. Biol. Chem. 289, 19448-19457.  https://doi.org/10.1074/jbc.M114.569855
  9. Curnock, R., Yalci, K., Palmfeldt, J., Jaattela, M., Liu, B., and Carroll, B. (2023). TFEB-dependent lysosome biogenesis is required for senescence. EMBO J. 42, e111241. 
  10. Dehay, B., Martinez-Vicente, M., Ramirez, A., Perier, C., Klein, C., Vila, M., and Bezard, E. (2012). Lysosomal dysfunction in Parkinson disease: ATP13A2 gets into the groove. Autophagy 8, 1389-1391.  https://doi.org/10.4161/auto.21011
  11. Fethiere, J., Venzke, D., Diepholz, M., Seybert, A., Geerlof, A., Gentzel, M., Wilm, M., and Bottcher, B. (2004). Building the stator of the yeast vacuolarATPase: specific interaction between subunits E and G. J. Biol. Chem. 279, 40670-40676.  https://doi.org/10.1074/jbc.M407086200
  12. Foster, D.W. (2012). Malonyl-CoA: the regulator of fatty acid synthesis and oxidation. J. Clin. Invest. 122, 1958-1959.  https://doi.org/10.1172/JCI63967
  13. Hardie, D.G. (2003). Minireview: the AMP-activated protein kinase cascade: the key sensor of cellular energy status. Endocrinology 144, 5179-5183.  https://doi.org/10.1210/en.2003-0982
  14. Hariharan, N., Maejima, Y., Nakae, J., Paik, J., Depinho, R.A., and Sadoshima, J. (2010). Deacetylation of FoxO by Sirt1 plays an essential role in mediating starvation-induced autophagy in cardiac myocytes. Circ. Res. 107, 1470-1482.  https://doi.org/10.1161/CIRCRESAHA.110.227371
  15. He, Y., She, H., Zhang, T., Xu, H., Cheng, L., Yepes, M., Zhao, Y., and Mao, Z. (2018). p38 MAPK inhibits autophagy and promotes microglial inflammatory responses by phosphorylating ULK1. J. Cell Biol. 217, 315-328.  https://doi.org/10.1083/jcb.201701049
  16. Huang, R., Xu, Y., Wan, W., Shou, X., Qian, J., You, Z., Liu, B., Chang, C., Zhou, T., Lippincott-Schwartz, J., et al. (2015). Deacetylation of nuclear LC3 drives autophagy initiation under starvation. Mol. Cell 57, 456-466.  https://doi.org/10.1016/j.molcel.2014.12.013
  17. Ikenaka, K., Kawai, K., Katsuno, M., Huang, Z., Jiang, Y.M., Iguchi, Y., Kobayashi, K., Kimata, T., Waza, M., Tanaka, F., et al. (2013). dnc-1/dynactin 1 knockdown disrupts transport of autophagosomes and induces motor neuron degeneration. PLoS One 8, e54511. 
  18. Jang, S.Y., Kang, H.T., and Hwang, E.S. (2012). Nicotinamide-induced mitophagy: event mediated by high NAD+/NADH ratio and SIRT1 protein activation. J. Biol. Chem. 287, 19304-19314.  https://doi.org/10.1074/jbc.M112.363747
  19. Jelluma, N., Yang, X., Stokoe, D., Evan, G.I., Dansen, T.B., and Haas-Kogan, D.A. (2006). Glucose withdrawal induces oxidative stress followed by apoptosis in glioblastoma cells but not in normal human astrocytes. Mol. Cancer Res. 4, 319-330.  https://doi.org/10.1158/1541-7786.MCR-05-0061
  20. Jung, T., Bader, N., and Grune, T. (2007). Lipofuscin: formation, distribution, and metabolic consequences. Ann. N. Y. Acad. Sci. 1119, 97-111.  https://doi.org/10.1196/annals.1404.008
  21. Juricic, P., Lu, Y.X., Leech, T., Drews, L.F., Paulitz, J., Lu, J., Nespital, T., Azami, S., Regan, J.C., Funk, E., et al. (2022). Long-lasting geroprotection from brief rapamycin treatment in early adulthood by persistently increased intestinal autophagy. Nat. Aging 2, 824-836.  https://doi.org/10.1038/s43587-022-00278-w
  22. Kane, P.M. (1995). Disassembly and reassembly of the yeast vacuolar H(+)-ATPase in vivo. J. Biol. Chem. 270, 17025-17032.  https://doi.org/10.1016/S0021-9258(17)46944-4
  23. Kang, H.T. and Hwang, E.S. (2009). Nicotinamide enhances mitochondria quality through autophagy activation in human cells. Aging Cell 8, 426-438.  https://doi.org/10.1111/j.1474-9726.2009.00487.x
  24. Kang, H.T., Park, J.T., Choi, K., Kim, Y., Choi, H.J.C., Jung, C.W., Lee, Y.S., and Park, S.C. (2017). Chemical screening identifies ATM as a target for alleviating senescence. Nat. Chem. Biol. 13, 616-623.  https://doi.org/10.1038/nchembio.2342
  25. Karabiyik, C., Vicinanza, M., Son, S.M., and Rubinsztein, D.C. (2021). Glucose deprivation induces autophagy via ULK1-mediated activation of PIKfyve in an AMPK-dependent manner. Dev. Cell 56, 1961-1975.e5.  https://doi.org/10.1016/j.devcel.2021.05.010
  26. Khanna, K.K., Lavin, M.F., Jackson, S.P., and Mulhern, T.D. (2001). ATM, a central controller of cellular responses to DNA damage. Cell Death Differ. 8, 1052-1065.  https://doi.org/10.1038/sj.cdd.4400874
  27. Kim, H.J., Han, Y.H., Kim, J.Y., and Lee, M.O. (2021). RORalpha enhances lysosomal acidification and autophagic flux in the hepatocytes. Hepatol. Commun. 5, 2121-2138.  https://doi.org/10.1002/hep4.1785
  28. Kimura, S., Noda, T., and Yoshimori, T. (2007). Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy 3, 452-460.  https://doi.org/10.4161/auto.4451
  29. Kwak, J.Y., Ham, H.J., Kim, C.M., and Hwang, E.S. (2015). Nicotinamide exerts antioxidative effects on senescent cells. Mol. Cells 38, 229-235.  https://doi.org/10.14348/molcells.2015.2253
  30. Lee, B.Y., Han, J.A., Im, J.S., Morrone, A., Johung, K., Goodwin, E.C., Kleijer, W.J., DiMaio, D., and Hwang, E.S. (2006). Senescence-associated betagalactosidase is lysosomal beta-galactosidase. Aging Cell 5, 187-195.  https://doi.org/10.1111/j.1474-9726.2006.00199.x
  31. Lee, I.H., Cao, L., Mostoslavsky, R., Lombard, D.B., Liu, J., Bruns, N.E., Tsokos, M., Alt, F.W., and Finkel, T. (2008). A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc. Natl. Acad. Sci. U. S. A. 105, 3374-3379.  https://doi.org/10.1073/pnas.0712145105
  32. Lee, Y.J., Galoforo, S.S., Berns, C.M., Chen, J.C., Davis, B.H., Sim, J.E., Corry, P.M., and Spitz, D.R. (1998). Glucose deprivation-induced cytotoxicity and alterations in mitogen-activated protein kinase activation are mediated by oxidative stress in multidrug-resistant human breast carcinoma cells. J. Biol. Chem. 273, 5294-5299.  https://doi.org/10.1074/jbc.273.9.5294
  33. Leprivier, G. and Rotblat, B. (2020). How does mTOR sense glucose deprivation? AMPK is the usual suspect. Cell Death Discov. 6, 27. 
  34. Li, X., Yu, W., Qian, X., Xia, Y., Zheng, Y., Lee, J.H., Li, W., Lyu, J., Rao, G., Zhang, X., et al. (2017). Nucleus-translocated ACSS2 promotes gene transcription for lysosomal biogenesis and autophagy. Mol. Cell 66, 684-697.e9.  https://doi.org/10.1016/j.molcel.2017.04.026
  35. Liu, Y., Song, X.D., Liu, W., Zhang, T.Y., and Zuo, J. (2003). Glucose deprivation induces mitochondrial dysfunction and oxidative stress in PC12 cell line. J. Cell. Mol. Med. 7, 49-56.  https://doi.org/10.1111/j.1582-4934.2003.tb00202.x
  36. Lu, M., Ammar, D., Ives, H., Albrecht, F., and Gluck, S.L. (2007). Physical interaction between aldolase and vacuolar H+-ATPase is essential for the assembly and activity of the proton pump. J. Biol. Chem. 282, 24495-24503.  https://doi.org/10.1074/jbc.M702598200
  37. Manchester, J., Kong, X., Lowry, O.H., and Lawrence, J.C., Jr. (1994). Ras signaling in the activation of glucose transport by insulin. Proc. Natl. Acad. Sci. U. S. A. 91, 4644-4648.  https://doi.org/10.1073/pnas.91.11.4644
  38. McGuire, C.M. and Forgac, M. (2018). Glucose deprivation increases V-ATPase assembly and activity in mammalian cells through AMP kinase and phosphatidylinositide 3-kinase/Akt signaling. J. Biol. Chem. 293, 9113-9123.  https://doi.org/10.1074/jbc.RA117.001327
  39. Miwa, S., Kashyap, S., Chini, E., and von Zglinicki, T. (2022). Mitochondrial dysfunction in cell senescence and aging. J. Clin. Invest. 132, e158447. 
  40. Morselli, E., Maiuri, M.C., Markaki, M., Megalou, E., Pasparaki, A., Palikaras, K., Criollo, A., Galluzzi, L., Malik, S.A., Vitale, I., et al. (2010). Caloric restriction and resveratrol promote longevity through the Sirtuin-1-dependent induction of autophagy. Cell Death Dis. 1, e10. 
  41. Moruno, F., Perez-Jimenez, E., and Knecht, E. (2012). Regulation of autophagy by glucose in Mammalian cells. Cells 1, 372-395.  https://doi.org/10.3390/cells1030372
  42. Nakamura, S. and Yoshimori, T. (2018). Autophagy and longevity. Mol. Cells 41, 65-72. 
  43. Ntsapi, C., Swart, C., Lumkwana, D., and Loos, B. (2016). Autophagic flux failure in neurodegeneration: identifying the defect and compensating flux offset. In Autophagy in Current Trends in Cellular Physiology and Pathology, N.V. Gorbunov and M. Schneider, eds. (Rijeka: IntechOpen), pp. 157-176. 
  44. Oh, C.K., Dolatabadi, N., Cieplak, P., Diaz-Meco, M.T., Moscat, J., Nolan, J.P., Nakamura, T., and Lipton, S.A. (2022). S-Nitrosylation of p62 Inhibits autophagic flux to promote alpha-synuclein secretion and spread in Parkinson's disease and Lewy body dementia. J. Neurosci. 42, 3011-3024.  https://doi.org/10.1523/JNEUROSCI.1508-21.2022
  45. Parra, K.J. and Kane, P.M. (1998). Reversible association between the V1 and V0 domains of yeast vacuolar H+-ATPase is an unconventional glucose-induced effect. Mol. Cell. Biol. 18, 7064-7074.  https://doi.org/10.1128/MCB.18.12.7064
  46. Ploumi, C., Daskalaki, I., and Tavernarakis, N. (2017). Mitochondrial biogenesis and clearance: a balancing act. FEBS J. 284, 183-195.  https://doi.org/10.1111/febs.13820
  47. Ramirez-Peinado, S., Leon-Annicchiarico, C.L., Galindo-Moreno, J., Iurlaro, R., Caro-Maldonado, A., Prehn, J.H.M., Ryan, K.M., and Munoz-Pinedo, C. (2013). Glucose-deprived cells do not engage in prosurvival autophagy. J. Biol. Chem. 288, 30387-30398.  https://doi.org/10.1074/jbc.M113.490581
  48. Salminen, A. and Kaarniranta, K. (2012). AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network. Ageing Res. Rev. 11, 230-241.  https://doi.org/10.1016/j.arr.2011.12.005
  49. Shi, G., Lee, J.R., Grimes, D.A., Racacho, L., Ye, D., Yang, H., Ross, O.A., Farrer, M., McQuibban, G.A., and Bulman, D.E. (2011). Functional alteration of PARL contributes to mitochondrial dysregulation in Parkinson's disease. Hum. Mol. Genet. 20, 1966-1974.  https://doi.org/10.1093/hmg/ddr077
  50. Shi, G. and McQuibban, G.A. (2017). The mitochondrial rhomboid protease PARL is regulated by PDK2 to integrate mitochondrial quality control and metabolism. Cell Rep. 18, 1458-1472.  https://doi.org/10.1016/j.celrep.2017.01.029
  51. Smardon, A.M. and Kane, P.M. (2007). RAVE is essential for the efficient assembly of the C subunit with the vacuolar H(+)-ATPase. J. Biol. Chem. 282, 26185-26194.  https://doi.org/10.1074/jbc.M703627200
  52. Son, Y., Cheong, Y.K., Kim, N.H., Chung, H.T., Kang, D.G., and Pae, H.O. (2011). Mitogen-activated protein kinases and reactive oxygen species: how can ROS activate MAPK pathways? J. Signal Transduct. 2011, 792639. 
  53. Son, Y., Kim, S., Chung, H.T., and Pae, H.O. (2013). Reactive oxygen species in the activation of MAP kinases. Methods Enzymol. 528, 27-48.  https://doi.org/10.1016/B978-0-12-405881-1.00002-1
  54. Song, S.B. and Hwang, E.S. (2018). A rise in ATP, ROS, and mitochondrial content upon glucose withdrawal correlates with a dysregulated mitochondria turnover mediated by the activation of the protein deacetylase SIRT1. Cells 8, 11. 
  55. Song, S.B. and Hwang, E.S. (2020). High levels of ROS impair lysosomal acidity and autophagy flux in glucose-deprived fibroblasts by activating ATM and Erk pathways. Biomolecules 10, 761. 
  56. Song, S.B., Shim, W., and Hwang, E.S. (2023). Lipofuscin granule accumulation requires autophagy activation. Mol. Cells 46, 486-495.  https://doi.org/10.14348/molcells.2023.0019
  57. Swerdlow, R.H. (2009). Mitochondrial medicine and the neurodegenerative mitochondriopathies. Pharmaceuticals (Basel) 2, 150-167.  https://doi.org/10.3390/ph2030150
  58. Twig, G., Elorza, A., Molina, A.J., Mohamed, H., Wikstrom, J.D., Walzer, G., Stiles, L., Haigh, S.E., Katz, S., Las, G., et al. (2008). Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 27, 433-446.  https://doi.org/10.1038/sj.emboj.7601963
  59. Wang, S., Li, H., Yuan, M., Fan, H., and Cai, Z. (2022). Role of AMPK in autophagy. Front. Physiol. 13, 1015500. 
  60. Wong, Y.C. and Holzbaur, E.L. (2014). The regulation of autophagosome dynamics by huntingtin and HAP1 is disrupted by expression of mutant huntingtin, leading to defective cargo degradation. J. Neurosci. 34, 1293-1305.  https://doi.org/10.1523/JNEUROSCI.1870-13.2014
  61. Yoo, S. and Jung, Y. (2018). A molecular approach to mitophagy and mitochondrial dynamics. Mol. Cells 41, 18-26. 
  62. Zhang, X.J., Chen, S., Huang, K.X., and Le, W.D. (2013). Why should autophagic flux be assessed? Acta Pharmacol. Sin. 34, 595-599.  https://doi.org/10.1038/aps.2012.184
  63. Zorov, D.B., Juhaszova, M., and Sollott, S.J. (2014). Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev. 94, 909-950.  https://doi.org/10.1152/physrev.00026.2013