DOI QR코드

DOI QR Code

Enhancing Anti-Cancer Therapy with Selective Autophagy Inhibitors by Targeting Protective Autophagy

  • Min Ju, Lee (Department of Medical Lifescience, College of Medicine, The Catholic University of Korea) ;
  • Jae-Sung, Park (Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea) ;
  • Seong Bin, Jo (Department of Medical Lifescience, College of Medicine, The Catholic University of Korea) ;
  • Young Ae, Joe (Department of Medical Lifescience, College of Medicine, The Catholic University of Korea)
  • Received : 2022.11.25
  • Accepted : 2022.12.06
  • Published : 2023.01.01

Abstract

Autophagy is a process of eliminating damaged or unnecessary proteins and organelles, thereby maintaining intracellular homeostasis. Deregulation of autophagy is associated with several diseases including cancer. Contradictory dual roles of autophagy have been well established in cancer. Cytoprotective mechanism of autophagy has been extensively investigated for overcoming resistance to cancer therapies including radiotherapy, targeted therapy, immunotherapy, and chemotherapy. Selective autophagy inhibitors that directly target autophagic process have been developed for cancer treatment. Efficacies of autophagy inhibitors have been tested in various pre-clinical cancer animal models. Combination therapies of autophagy inhibitors with chemotherapeutics are being evaluated in clinal trials. In this review, we will focus on genetical and pharmacological perturbations of autophagy-related proteins in different steps of autophagic process and their therapeutic benefits. We will also summarize combination therapies of autophagy inhibitors with chemotherapies and their outcomes in pre-clinical and clinical studies. Understanding of current knowledge of development, progress, and application of cytoprotective autophagy inhibitors in combination therapies will open new possibilities for overcoming drug resistance and improving clinical outcomes.

Keywords

Acknowledgement

This research was supported by a grant (NRF-2020R1A2C2006189) from the National Research Foundation of Korea grants funded by the Korean government.

References

  1. Afzal, S., Hao, Z., Itsumi, M., Abouelkheer, Y., Brenner, D., Gao, Y., Wakeham, A., Hong, C., Li, W. Y., Sylvester, J., Gilani, S. O., Brustle, A., Haight, J., You-Ten, A. J., Lin, G. H., Inoue, S. and Mak, T. W. (2015) Autophagy-independent functions of UVRAG are essential for peripheral naive T-cell homeostasis. Proc. Natl. Acad. Sci. U. S. A. 112, 1119-1124. https://doi.org/10.1073/pnas.1423588112
  2. Akin, D., Wang, S. K., Habibzadegah-Tari, P., Law, B., Ostrov, D., Li, M., Yin, X. M., Kim, J. S., Horenstein, N. and Dunn, W. A., Jr. (2014) A novel ATG4B antagonist inhibits autophagy and has a negative impact on osteosarcoma tumors. Autophagy 10, 2021-2035. https://doi.org/10.4161/auto.32229
  3. Aldrich, L. N., Kuo, S. Y., Castoreno, A. B., Goel, G., Kuballa, P., Rees, M. G., Seashore-Ludlow, B. A., Cheah, J. H., Latorre, I. J., Schreiber, S. L., Shamji, A. F. and Xavier, R. J. (2015) Discovery of a small-molecule probe for V-ATPase function. J. Am. Chem. Soc. 137, 5563-5568. https://doi.org/10.1021/jacs.5b02150
  4. Aman, Y., Schmauck-Medina, T., Hansen, M., Morimoto, R. I., Simon, A. K., Bjedov, I., Palikaras, K., Simonsen, A., Johansen, T., Tavernarakis, N., Rubinsztein, D. C., Partridge, L., Kroemer, G., Labbadia, J. and Fang, E. F. (2021) Autophagy in healthy aging and disease. Nat. Aging 1, 634-650. https://doi.org/10.1038/s43587-021-00098-4
  5. Anand, K., Niravath, P., Patel, T., Ensor, J., Rodriguez, A., Boone, T., Wong, S. T. and Chang, J. C. (2021) A phase II study of the efficacy and safety of chloroquine in combination with taxanes in the treatment of patients with advanced or metastatic anthracycline-refractory breast cancer. Clin. Breast Cancer 21, 199-204. https://doi.org/10.1016/j.clbc.2020.09.015
  6. Aryal, P., Kim, K., Park, P. H., Ham, S., Cho, J. and Song, K. (2014) Baicalein induces autophagic cell death through AMPK/ULK1 activation and downregulation of mTORC1 complex components in human cancer cells. FEBS J. 281, 4644-4658. https://doi.org/10.1111/febs.12969
  7. Bago, R., Malik, N., Munson, M. J., Prescott, A. R., Davies, P., Sommer, E., Shpiro, N., Ward, R., Cross, D., Ganley, I. G. and Alessi, D. R. (2014) Characterization of VPS34-IN1, a selective inhibitor of Vps34, reveals that the phosphatidylinositol 3-phosphate-binding SGK3 protein kinase is a downstream target of class III phosphoinositide 3-kinase. Biochem. J. 463, 413-427. https://doi.org/10.1042/BJ20140889
  8. Baquero, P., Dawson, A., Mukhopadhyay, A., Kuntz, E. M., Mitchell, R., Olivares, O., Ianniciello, A., Scott, M. T., Dunn, K., Nicastri, M. C., Winkler, J. D., Michie, A. M., Ryan, K. M., Halsey, C., Gottlieb, E., Keaney, E. P., Murphy, L. O., Amaravadi, R. K., Holyoake, T. L. and Helgason, G. V. (2019) Targeting quiescent leukemic stem cells using second generation autophagy inhibitors. Leukemia 33, 981-994. https://doi.org/10.1038/s41375-018-0252-4
  9. Birgisdottir, A. B., Lamark, T. and Johansen, T. (2013) The LIR motif - crucial for selective autophagy. J. Cell Sci. 126, 3237-3247. https://doi.org/10.1242/jcs.126128
  10. Cann, G. M., Guignabert, C., Ying, L., Deshpande, N., Bekker, J. M., Wang, L., Zhou, B. and Rabinovitch, M. (2008) Developmental expression of LC3alpha and beta: absence of fibronectin or autophagy phenotype in LC3beta knockout mice. Dev. Dyn. 237, 187-195. https://doi.org/10.1002/dvdy.21392
  11. Carew, J. S., Espitia, C. M., Zhao, W., Han, Y., Visconte, V., Phillips, J. and Nawrocki, S. T. (2017) Disruption of autophagic degradation with ROC-325 antagonizes renal cell carcinoma pathogenesis. Clin. Cancer Res. 23, 2869-2879. https://doi.org/10.1158/1078-0432.CCR-16-1742
  12. Carlsson, S. R. and Simonsen, A. (2015) Membrane dynamics in autophagosome biogenesis. J. Cell Sci. 128, 193-205. https://doi.org/10.1242/jcs.141036
  13. Chang, H. and Zou, Z. (2020) Targeting autophagy to overcome drug resistance: further developments. J. Hematol. Oncol. 13, 159. https://doi.org/10.1186/s13045-020-01000-2
  14. Chen, M. Y., Yadav, V. K., Chu, Y. C., Ong, J. R., Huang, T. Y., Lee, K. F., Lee, K. H., Yeh, C. T. and Lee, W. H. (2021) Hydroxychloroquine (HCQ) modulates autophagy and oxidative DNA damage stress in hepatocellular carcinoma to overcome sorafenib resistance via TLR9/SOD1/hsa-miR-30a-5p/Beclin-1 axis. Cancers (Basel) 13, 3227. https://doi.org/10.3390/cancers13133227
  15. Chen, S. and Yao, L. (2021) Autophagy inhibitor potentiates the antitumor efficacy of apatinib in uterine sarcoma by stimulating PI3K/Akt/mTOR pathway. Cancer Chemother. Pharmacol. 88, 323-334. https://doi.org/10.1007/s00280-021-04291-5
  16. Chen, Y., Xie, X., Wang, C., Hu, Y., Zhang, H., Zhang, L., Tu, S., He, Y. and Li, Y. (2020) Dual targeting of NUAK1 and ULK1 using the multitargeted inhibitor MRT68921 exerts potent antitumor activities. Cell Death Dis. 11, 712. https://doi.org/10.1038/s41419-020-02885-0
  17. Cheong, H., Wu, J., Gonzales, L. K., Guttentag, S. H., Thompson, C. B. and Lindsten, T. (2014) Analysis of a lung defect in autophagy-deficient mouse strains. Autophagy 10, 45-56. https://doi.org/10.4161/auto.26505
  18. Chu, H. Y., Wang, W., Chen, X., Jiang, Y. E., Cheng, R., Qi, X., Zhong, Z. M., Zeng, M. S., Zhu, X. F. and Sun, C. Z. (2018a) Bafilomycin A1 increases the sensitivity of tongue squamous cell carcinoma cells to cisplatin by inhibiting the lysosomal uptake of platinum ions but not autophagy. Cancer Lett. 423, 105-112. https://doi.org/10.1016/j.canlet.2018.03.003
  19. Chu, J., Fu, Y., Xu, J., Zheng, X., Gu, Q., Luo, X., Dai, Q., Zhang, S., Liu, P., Hong, L. and Li, M. (2018b) ATG4B inhibitor FMK-9a induces autophagy independent on its enzyme inhibition. Arch. Biochem. Biophys. 644, 29-36. https://doi.org/10.1016/j.abb.2018.03.001
  20. Dowdle, W. E., Nyfeler, B., Nagel, J., Elling, R. A., Liu, S., Triantafellow, E., Menon, S., Wang, Z., Honda, A., Pardee, G., Cantwell, J., Luu, C., Cornella-Taracido, I., Harrington, E., Fekkes, P., Lei, H., Fang, Q., Digan, M. E., Burdick, D., Powers, A. F., Helliwell, S. B., D'Aquin, S., Bastien, J., Wang, H., Wiederschain, D., Kuerth, J., Bergman, P., Schwalb, D., Thomas, J., Ugwonali, S., Harbinski, F., Tallarico, J., Wilson, C. J., Myer, V. E., Porter, J. A., Bussiere, D. E., Finan, P. M., Labow, M. A., Mao, X., Hamann, L. G., Manning, B. D., Valdez, R. A., Nicholson, T., Schirle, M., Knapp, M. S., Keaney, E. P. and Murphy, L. O. (2014) Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo. Nat. Cell Biol. 16, 1069-1079. https://doi.org/10.1038/ncb3053
  21. Dyczynski, M., Yu, Y., Otrocka, M., Parpal, S., Braga, T., Henley, A. B., Zazzi, H., Lerner, M., Wennerberg, K., Viklund, J., Martinsson, J., Grander, D., De Milito, A. and Pokrovskaja Tamm, K. (2018) Targeting autophagy by small molecule inhibitors of vacuolar protein sorting 34 (Vps34) improves the sensitivity of breast cancer cells to Sunitinib. Cancer Lett. 435, 32-43. https://doi.org/10.1016/j.canlet.2018.07.028
  22. Egan, D. F., Chun, M. G., Vamos, M., Zou, H., Rong, J., Miller, C. J., Lou, H. J., Raveendra-Panickar, D., Yang, C. C., Sheffler, D. J., Teriete, P., Asara, J. M., Turk, B. E., Cosford, N. D. and Shaw, R. J. (2015) Small molecule inhibition of the autophagy kinase ULK1 and identification of ULK1 substrates. Mol. Cell 59, 285-297. https://doi.org/10.1016/j.molcel.2015.05.031
  23. El-Gowily, A. H., Loutfy, S. A., Ali, E. M. M., Mohamed, T. M. and Mansour, M. A. (2021) Tioconazole and chloroquine act synergistically to combat doxorubicin-induced toxicity via inactivation of PI3K/AKT/mTOR signaling mediated ROS-dependent apoptosis and autophagic flux inhibition in MCF-7 breast cancer cells. Pharmaceuticals (Basel) 14, 254. https://doi.org/10.3390/ph14030254
  24. Eskelinen, E. L. (2011) The dual role of autophagy in cancer. Curr. Opin. Pharmacol. 11, 294-300. https://doi.org/10.1016/j.coph.2011.03.009
  25. Feng, H., Cheng, X., Kuang, J., Chen, L., Yuen, S., Shi, M., Liang, J., Shen, B., Jin, Z., Yan, J. and Qiu, W. (2018) Apatinib-induced protective autophagy and apoptosis through the AKT-mTOR pathway in anaplastic thyroid cancer. Cell Death Dis. 9, 1030. https://doi.org/10.1038/s41419-018-1054-3
  26. Fimia, G. M., Stoykova, A., Romagnoli, A., Giunta, L., Di Bartolomeo, S., Nardacci, R., Corazzari, M., Fuoco, C., Ucar, A., Schwartz, P., Gruss, P., Piacentini, M., Chowdhury, K. and Cecconi, F. (2007) Ambra1 regulates autophagy and development of the nervous system. Nature 447, 1121-1125. https://doi.org/10.1038/nature05925
  27. Fu, W., Li, X., Lu, X., Zhang, L., Li, R., Zhang, N., Liu, S., Yang, X., Wang, Y., Zhao, Y., Meng, X. and Zhu, W. G. (2017) A novel acridine derivative, LS-1-10 inhibits autophagic degradation and triggers apoptosis in colon cancer cells. Cell Death Dis. 8, e3086. https://doi.org/10.1038/cddis.2017.498
  28. Fu, Y., Hong, L., Xu, J., Zhong, G., Gu, Q., Gu, Q., Guan, Y., Zheng, X., Dai, Q., Luo, X., Liu, C., Huang, Z., Yin, X. M., Liu, P. and Li, M. (2019) Discovery of a small molecule targeting autophagy via ATG4B inhibition and cell death of colorectal cancer cells in vitro and in vivo. Autophagy 15, 295-311. https://doi.org/10.1080/15548627.2018.1517073
  29. Gan, B., Peng, X., Nagy, T., Alcaraz, A., Gu, H. and Guan, J. L. (2006) Role of FIP200 in cardiac and liver development and its regulation of TNFalpha and TSC-mTOR signaling pathways. J. Cell Biol. 175, 121-133. https://doi.org/10.1083/jcb.200604129
  30. Groza, T., Gomez, F. L., Mashhadi H. H., Munoz-Fuentes V., Gunes O., Wilson R., Cacheiro P., Frost A., Keskivali-Bond P., Vardal B., McCoy A., Cheng T. K., Santos L., Wells S., Smedley D., Mallon A. M. and Parkinson H. (2022) The International Mouse Phenotyping Consortium: comprehensive knockout phenotyping underpinning the study of human disease. Nucleic Acids Res. gkac972.
  31. Guerini, A. E., Triggiani, L., Maddalo, M., Bonu, M. L., Frassine, F., Baiguini, A., Alghisi, A., Tomasini, D., Borghetti, P., Pasinetti, N., Bresciani, R., Magrini, S. M. and Buglione, M. (2019) Mebendazole as a candidate for drug repurposing in oncology: an extensive review of current literature. Cancers (Basel) 11, 1284. https://doi.org/10.3390/cancers11091284
  32. Guo, J. Y., Chen, H. Y., Mathew, R., Fan, J., Strohecker, A. M., KarsliUzunbas, G., Kamphorst, J. J., Chen, G., Lemons, J. M., Karantza, V., Coller, H. A., Dipaola, R. S., Gelinas, C., Rabinowitz, J. D. and White, E. (2011) Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev. 25, 460-470. https://doi.org/10.1101/gad.2016311
  33. Guo, J. Y., Karsli-Uzunbas, G., Mathew, R., Aisner, S. C., Kamphorst, J. J., Strohecker, A. M., Chen, G., Price, S., Lu, W., Teng, X., Snyder, E., Santanam, U., Dipaola, R. S., Jacks, T., Rabinowitz, J. D. and White, E. (2013a) Autophagy suppresses progression of Kras-induced lung tumors to oncocytomas and maintains lipid homeostasis. Genes Dev. 27, 1447-1461. https://doi.org/10.1101/gad.219642.113
  34. Guo, J. Y., Xia, B. and White, E. (2013b) Autophagy-mediated tumor promotion. Cell 155, 1216-1219. https://doi.org/10.1016/j.cell.2013.11.019
  35. Hanada, T., Noda, N. N., Satomi, Y., Ichimura, Y., Fujioka, Y., Takao, T., Inagaki, F. and Ohsumi, Y. (2007) The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J. Biol. Chem. 282, 37298-37302. https://doi.org/10.1074/jbc.C700195200
  36. Hansen, M., Rubinsztein, D. C. and Walker, D. W. (2018) Autophagy as a promoter of longevity: insights from model organisms. Nat. Rev. Mol. Cell Biol. 19, 579-593.
  37. Homewood, C. A., Warhurst, D. C., Peters, W. and Baggaley, V. C. (1972) Lysosomes, pH and the anti-malarial action of chloroquine. Nature 235, 50-52. https://doi.org/10.1038/235050a0
  38. Hu, T., Li, P., Luo, Z., Chen, X., Zhang, J., Wang, C., Chen, P. and Dong, Z. (2016) Chloroquine inhibits hepatocellular carcinoma cell growth in vitro and in vivo. Oncol. Rep. 35, 43-49. https://doi.org/10.3892/or.2015.4380
  39. Huang, H., Song, J., Liu, Z., Pan, L. and Xu, G. (2018) Autophagy activation promotes bevacizumab resistance in glioblastoma by suppressing Akt/mTOR signaling pathway. Oncol. Lett. 15, 1487-1494. https://doi.org/10.3892/ol.2017.7446
  40. Huang, T., Kim, C. K., Alvarez, A. A., Pangeni, R. P., Wan, X., Song, X., Shi, T., Yang, Y., Sastry, N., Horbinski, C. M., Lu, S., Stupp, R., Kessler, J. A., Nishikawa, R., Nakano, I., Sulman, E. P., Lu, X., James, C. D., Yin, X. M., Hu, B. and Cheng, S. Y. (2017) MST4 phosphorylation of ATG4B regulates autophagic activity, tumorigenicity, and radioresistance in glioblastoma. Cancer Cell 32, 840-855.e8. https://doi.org/10.1016/j.ccell.2017.11.005
  41. Ichimura, Y., Kirisako, T., Takao, T., Satomi, Y., Shimonishi, Y., Ishihara, N., Mizushima, N., Tanida, I., Kominami, E., Ohsumi, M., Noda, T. and Ohsumi, Y. (2000) A ubiquitin-like system mediates protein lipidation. Nature 408, 488-492. https://doi.org/10.1038/35044114
  42. Jiang, Y., Chen, M., Nie, H. and Yuan, Y. (2019) PD-1 and PD-L1 in cancer immunotherapy: clinical implications and future considerations. Hum. Vaccin. Immunother. 15, 1111-1122. https://doi.org/10.1080/21645515.2019.1571892
  43. Jo, S. B., Sung, S. J., Choi, H. S., Park, J. S., Hong, Y. K. and Joe, Y. A. (2022) Modulation of autophagy is a potential strategy for enhancing the anti-tumor effect of mebendazole in glioblastoma cells. Biomol. Ther. (Seoul) 30, 616-624. https://doi.org/10.4062/biomolther.2022.122
  44. Kabeya, Y., Mizushima, N., Ueno, T., Yamamoto, A., Kirisako, T., Noda, T., Kominami, E., Ohsumi, Y. and Yoshimori, T. (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 19, 5720-5728. https://doi.org/10.1093/emboj/19.21.5720
  45. Kaizuka, T. and Mizushima, N. (2016) Atg13 is essential for autophagy and cardiac development in mice. Mol. Cell. Biol. 36, 585-595. https://doi.org/10.1128/MCB.01005-15
  46. Kanzawa, T., Germano, I. M., Komata, T., Ito, H., Kondo, Y. and Kondo, S. (2004) Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells. Cell Death Differ. 11, 448-457. https://doi.org/10.1038/sj.cdd.4401359
  47. Karasic, T. B., O'Hara, M. H., Loaiza-Bonilla, A., Reiss, K. A., Teitelbaum, U. R., Borazanci, E., De Jesus-Acosta, A., Redlinger, C., Burrell, J. A., Laheru, D. A., Von Hoff, D. D., Amaravadi, R. K., Drebin, J. A. and O'Dwyer, P. J. (2019) Effect of gemcitabine and nab-paclitaxel with or without hydroxychloroquine on patients with advanced pancreatic cancer: a phase 2 randomized clinical trial. JAMA Oncol. 5, 993-998. https://doi.org/10.1001/jamaoncol.2019.0684
  48. Karim, N. A., Ullah, A., Ahmad, I., Bahassi, E., Olowokure, O., Khaled, A., Davis, H. and Morris, J. C. (2022) A phase I trial to determine the safety and tolerability of autophagy inhibition using chloroquine or hydroxychloroquine in combination with carboplatin and gemcitabine in patients with advanced solid tumors. Front. Oncol. 12, 811411. https://doi.org/10.3389/fonc.2022.811411
  49. Kawamura, N., Sun-Wada, G. H., Aoyama, M., Harada, A., Takasuga, S., Sasaki, T. and Wada, Y. (2012) Delivery of endosomes to lysosomes via microautophagy in the visceral endoderm of mouse embryos. Nat. Commun. 3, 1071. https://doi.org/10.1038/ncomms2069
  50. Kimmelman, A. C. (2011) The dynamic nature of autophagy in cancer. Genes Dev. 25, 1999-2010. https://doi.org/10.1101/gad.17558811
  51. Komatsu, M., Waguri, S., Ueno, T., Iwata, J., Murata, S., Tanida, I., Ezaki, J., Mizushima, N., Ohsumi, Y., Uchiyama, Y., Kominami, E., Tanaka, K. and Chiba, T. (2005) Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J. Cell Biol. 169, 425-434. https://doi.org/10.1083/jcb.200412022
  52. Kuma, A., Hatano, M., Matsui, M., Yamamoto, A., Nakaya, H., Yoshimori, T., Ohsumi, Y., Tokuhisa, T. and Mizushima, N. (2004) The role of autophagy during the early neonatal starvation period. Nature 432, 1032-1036. https://doi.org/10.1038/nature03029
  53. Kundu, M., Lindsten, T., Yang, C. Y., Wu, J., Zhao, F., Zhang, J., Selak, M. A., Ney, P. A. and Thompson, C. B. (2008) Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation. Blood 112, 1493-1502. https://doi.org/10.1182/blood-2008-02-137398
  54. Kurdi, A., Cleenewerck, M., Vangestel, C., Lyssens, S., Declercq, W., Timmermans, J. P., Stroobants, S., Augustyns, K., De Meyer, G. R. Y., Van Der Veken, P. and Martinet, W. (2017) ATG4B inhibitors with a benzotropolone core structure block autophagy and augment efficiency of chemotherapy in mice. Biochem. Pharmacol. 138, 150-162. https://doi.org/10.1016/j.bcp.2017.06.119
  55. Lee, E. J. and Tournier, C. (2011) The requirement of uncoordinated 51-like kinase 1 (ULK1) and ULK2 in the regulation of autophagy. Autophagy 7, 689-695. https://doi.org/10.4161/auto.7.7.15450
  56. Lee, S. W., Kim, H. K., Lee, N. H., Yi, H. Y., Kim, H. S., Hong, S. H., Hong, Y. K. and Joe, Y. A. (2015) The synergistic effect of combination temozolomide and chloroquine treatment is dependent on autophagy formation and p53 status in glioma cells. Cancer Lett. 360, 195-204. https://doi.org/10.1016/j.canlet.2015.02.012
  57. Levy, J. M. M., Towers, C. G. and Thorburn, A. (2017) Targeting autophagy in cancer. Nat. Rev. Cancer 17, 528-542. https://doi.org/10.1038/nrc.2017.53
  58. Li, L. Q., Xie, W. J., Pan, D., Chen, H. and Zhang, L. (2016) Inhibition of autophagy by bafilomycin A1 promotes chemosensitivity of gastric cancer cells. Tumour Biol. 37, 653-659. https://doi.org/10.1007/s13277-015-3842-z
  59. Lin, J. F., Lin, Y. C., Tsai, T. F., Chen, H. E., Chou, K. Y. and Hwang, T. I. (2017) Cisplatin induces protective autophagy through activation of BECN1 in human bladder cancer cells. Drug Des. Devel. Ther. 11, 1517-1533. https://doi.org/10.2147/DDDT.S126464
  60. Liu, K., Ren, T., Huang, Y., Sun, K., Bao, X., Wang, S., Zheng, B. and Guo, W. (2017a) Apatinib promotes autophagy and apoptosis through VEGFR2/STAT3/BCL-2 signaling in osteosarcoma. Cell Death Dis. 8, e3015. https://doi.org/10.1038/cddis.2017.422
  61. Liu, L. Q., Wang, S. B., Shao, Y. F., Shi, J. N., Wang, W., Chen, W. Y., Ye, Z. Q., Jiang, J. Y., Fang, Q. X., Zhang, G. B. and Xuan, Z. X. (2019) Hydroxychloroquine potentiates the anti-cancer effect of bevacizumab on glioblastoma via the inhibition of autophagy. Biomed. Pharmacother. 118, 109339. https://doi.org/10.1016/j.biopha.2019.109339
  62. Liu, P. F., Tsai, K. L., Hsu, C. J., Tsai, W. L., Cheng, J. S., Chang, H. W., Shiau, C. W., Goan, Y. G., Tseng, H. H., Wu, C. H., Reed, J. C., Yang, L. W. and Shu, C. W. (2018) Drug repurposing screening identifies tioconazole as an ATG4 inhibitor that suppresses autophagy and sensitizes cancer cells to chemotherapy. Theranostics 8, 830-845. https://doi.org/10.7150/thno.22012
  63. Liu, S. and Li, X. (2015) Autophagy inhibition enhances sensitivity of endometrial carcinoma cells to paclitaxel. Int. J. Oncol. 46, 2399-2408. https://doi.org/10.3892/ijo.2015.2937
  64. Liu, Z., He, K., Ma, Q., Yu, Q., Liu, C., Ndege, I., Wang, X. and Yu, Z. (2017b) Autophagy inhibitor facilitates gefitinib sensitivity in vitro and in vivo by activating mitochondrial apoptosis in triple negative breast cancer. PLoS One 12, e0177694. https://doi.org/10.1371/journal.pone.0177694
  65. Luo, Q., Li, X., Gan, G., Yang, M., Chen, X. and Chen, F. (2021) PPT1 reduction contributes to erianin-induced growth inhibition in oral squamous carcinoma cells. Front. Cell Dev. Biol. 9, 764263. https://doi.org/10.3389/fcell.2021.764263
  66. Malhotra, J., Jabbour, S., Orlick, M., Riedlinger, G., Guo, Y., White, E. and Aisner, J. (2019) Phase Ib/II study of hydroxychloroquine in combination with chemotherapy in patients with metastatic non-small cell lung cancer (NSCLC). Cancer Treat. Res. Commun. 21, 100158. https://doi.org/10.1016/j.ctarc.2019.100158
  67. Malhotra, R., Warne, J. P., Salas, E., Xu, A. W. and Debnath, J. (2015) Loss of Atg12, but not Atg5, in pro-opiomelanocortin neurons exacerbates diet-induced obesity. Autophagy 11, 145-154.
  68. Marino, G., Fernandez, A. F., Cabrera, S., Lundberg, Y. W., Cabanillas, R., Rodriguez, F., Salvador-Montoliu, N., Vega, J. A., Germana, A., Fueyo, A., Freije, J. M. and Lopez-Otin, C. (2010) Autophagy is essential for mouse sense of balance. J. Clin. Invest. 120, 2331-2344. https://doi.org/10.1172/JCI42601
  69. Martin, K. R., Celano, S. L., Solitro, A. R., Gunaydin, H., Scott, M., O'Hagan, R. C., Shumway, S. D., Fuller, P. and MacKeigan, J. P. (2018) A potent and selective ULK1 inhibitor suppresses autophagy and sensitizes cancer cells to nutrient stress. iScience 8, 74-84. https://doi.org/10.1016/j.isci.2018.09.012
  70. Mauthe, M., Orhon, I., Rocchi, C., Zhou, X., Luhr, M., Hijlkema, K. J., Coppes, R. P., Engedal, N., Mari, M. and Reggiori, F. (2018) Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion. Autophagy 14, 1435-1455. https://doi.org/10.1080/15548627.2018.1474314
  71. McAfee, Q., Zhang, Z., Samanta, A., Levi, S. M., Ma, X. H., Piao, S., Lynch, J. P., Uehara, T., Sepulveda, A. R., Davis, L. E., Winkler, J. D. and Amaravadi, R. K. (2012) Autophagy inhibitor Lys05 has single-agent antitumor activity and reproduces the phenotype of a genetic autophagy deficiency. Proc. Natl. Acad. Sci. U. S. A. 109, 8253-8258. https://doi.org/10.1073/pnas.1118193109
  72. Meunier, G., Birsen, R., Cazelles, C., Belhadj, M., Cantero-Aguilar, L., Kosmider, O., Fontenay, M., Azar, N., Mayeux, P., Chapuis, N., Tamburini, J. and Bouscary, D. (2020) Antileukemic activity of the VPS34-IN1 inhibitor in acute myeloid leukemia. Oncogenesis 9, 94. https://doi.org/10.1038/s41389-020-00278-8
  73. Mizushima, N. (2007) Autophagy: process and function. Genes Dev. 21, 2861-2873. https://doi.org/10.1101/gad.1599207
  74. Mizushima, N., Yoshimori, T. and Ohsumi, Y. (2011) The role of Atg proteins in autophagosome formation. Annu. Rev. Cell Dev. Biol. 27, 107-132. https://doi.org/10.1146/annurev-cellbio-092910-154005
  75. Molenaar, R. J., Coelen, R. J. S., Khurshed, M., Roos, E., Caan, M. W. A., van Linde, M. E., Kouwenhoven, M., Bramer, J. A. M., Bovee, J., Mathot, R. A., Klumpen, H. J., van Laarhoven, H. W. M., van Noorden, C. J. F., Vandertop, W. P., Gelderblom, H., van Gulik, T. M. and Wilmink, J. W. (2017) Study protocol of a phase IB/II clinical trial of metformin and chloroquine in patients with IDH1-mutated or IDH2-mutated solid tumours. BMJ Open 7, e014961. https://doi.org/10.1136/bmjopen-2016-014961
  76. Nakai, K., Hung, M. C. and Yamaguchi, H. (2016) A perspective on anti-EGFR therapies targeting triple-negative breast cancer. Am. J. Cancer Res. 6, 1609-1623.
  77. Nawrocki, S. T., Han, Y., Visconte, V., Przychodzen, B., Espitia, C. M., Phillips, J., Anwer, F., Advani, A., Carraway, H. E., Kelly, K. R., Sekeres, M. A., Maciejewski, J. P. and Carew, J. S. (2019) The novel autophagy inhibitor ROC-325 augments the antileukemic activity of azacitidine. Leukemia 33, 2971-2974. https://doi.org/10.1038/s41375-019-0529-2
  78. Nemazanyy, I., Blaauw, B., Paolini, C., Caillaud, C., Protasi, F., Mueller, A., Proikas-Cezanne, T., Russell, R. C., Guan, K. L., Nishino, I., Sandri, M., Pende, M. and Panasyuk, G. (2013) Defects of Vps15 in skeletal muscles lead to autophagic vacuolar myopathy and lysosomal disease. EMBO Mol. Med. 5, 870-890. https://doi.org/10.1002/emmm.201202057
  79. Noman, M. Z., Parpal, S., Van Moer, K., Xiao, M., Yu, Y., Viklund, J., De Milito, A., Hasmim, M., Andersson, M., Amaravadi, R. K., Martinsson, J., Berchem, G. and Janji, B. (2020) Inhibition of Vps34 reprograms cold into hot inflamed tumors and improves anti-PD-1/PD-L1 immunotherapy. Sci. Adv. 6, eaax7881. https://doi.org/10.1126/sciadv.aax7881
  80. Petherick, K. J., Conway, O. J., Mpamhanga, C., Osborne, S. A., Kamal, A., Saxty, B. and Ganley, I. G. (2015) Pharmacological inhibition of ULK1 kinase blocks mammalian target of rapamycin (mTOR)-dependent autophagy. J. Biol. Chem. 290, 11376-11383. https://doi.org/10.1074/jbc.C114.627778
  81. Petiot, A., Ogier-Denis, E., Blommaart, E. F., Meijer, A. J. and Codogno, P. (2000) Distinct classes of phosphatidylinositol 3'-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J. Biol. Chem. 275, 992-998. https://doi.org/10.1074/jbc.275.2.992
  82. Puissant, A., Robert, G., Fenouille, N., Luciano, F., Cassuto, J. P., Raynaud, S. and Auberger, P. (2010) Resveratrol promotes autophagic cell death in chronic myelogenous leukemia cells via JNK-mediated p62/SQSTM1 expression and AMPK activation. Cancer Res. 70, 1042-1052. https://doi.org/10.1158/0008-5472.CAN-09-3537
  83. Qiu, L., Zhou, G. and Cao, S. (2020) Targeted inhibition of ULK1 enhances daunorubicin sensitivity in acute myeloid leukemia. Life Sci. 243, 117234. https://doi.org/10.1016/j.lfs.2019.117234
  84. Qiu, Z., Kuhn, B., Aebi, J., Lin, X., Ding, H., Zhou, Z., Xu, Z., Xu, D., Han, L., Liu, C., Qiu, H., Zhang, Y., Haap, W., Riemer, C., Stahl, M., Qin, N., Shen, H. C. and Tang, G. (2016) Discovery of fluoromethylketone-based peptidomimetics as covalent ATG4B (autophagin-1) inhibitors. ACS Med. Chem. Lett. 7, 802-806. https://doi.org/10.1021/acsmedchemlett.6b00208
  85. Qu, X., Yu, J., Bhagat, G., Furuya, N., Hibshoosh, H., Troxel, A., Rosen, J., Eskelinen, E. L., Mizushima, N., Ohsumi, Y., Cattoretti, G. and Levine, B. (2003) Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J. Clin. Invest. 112, 1809-1820. https://doi.org/10.1172/JCI20039
  86. Rebecca, V. W., Nicastri, M. C., Fennelly, C., Chude, C. I., Barber-Rotenberg, J. S., Ronghe, A., McAfee, Q., McLaughlin, N. P., Zhang, G., Goldman, A. R., Ojha, R., Piao, S., Noguera-Ortega, E., Martorella, A., Alicea, G. M., Lee, J. J., Schuchter, L. M., Xu, X., Herlyn, M., Marmorstein, R., Gimotty, P. A., Speicher, D. W., Winkler, J. D. and Amaravadi, R. K. (2019) PPT1 promotes tumor growth and is the molecular target of chloroquine derivatives in cancer. Cancer Discov. 9, 220-229. https://doi.org/10.1158/2159-8290.CD-18-0706
  87. Ronan, B., Flamand, O., Vescovi, L., Dureuil, C., Durand, L., Fassy, F., Bachelot, M. F., Lamberton, A., Mathieu, M., Bertrand, T., Marquette, J. P., El-Ahmad, Y., Filoche-Romme, B., Schio, L., GarciaEcheverria, C., Goulaouic, H. and Pasquier, B. (2014) A highly potent and selective Vps34 inhibitor alters vesicle trafficking and autophagy. Nat. Chem. Biol. 10, 1013-1019. https://doi.org/10.1038/nchembio.1681
  88. Rosenfeld, M. R., Ye, X., Supko, J. G., Desideri, S., Grossman, S. A., Brem, S., Mikkelson, T., Wang, D., Chang, Y. C., Hu, J., McAfee, Q., Fisher, J., Troxel, A. B., Piao, S., Heitjan, D. F., Tan, K. S., Pontiggia, L., O'Dwyer, P. J., Davis, L. E. and Amaravadi, R. K. (2014) A phase I/II trial of hydroxychloroquine in conjunction with radiation therapy and concurrent and adjuvant temozolomide in patients with newly diagnosed glioblastoma multiforme. Autophagy 10, 1359-1368. https://doi.org/10.4161/auto.28984
  89. Russell, R. C., Tian, Y., Yuan, H., Park, H. W., Chang, Y. Y., Kim, J., Kim, H., Neufeld, T. P., Dillin, A. and Guan, K. L. (2013) ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat. Cell Biol. 15, 741-750. https://doi.org/10.1038/ncb2757
  90. Saitoh, T., Fujita, N., Jang, M. H., Uematsu, S., Yang, B. G., Satoh, T., Omori, H., Noda, T., Yamamoto, N., Komatsu, M., Tanaka, K., Kawai, T., Tsujimura, T., Takeuchi, O., Yoshimori, T. and Akira, S. (2008) Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 456, 264-268. https://doi.org/10.1038/nature07383
  91. Schaaf, M. B., Keulers, T. G., Vooijs, M. A. and Rouschop, K. M. (2016) LC3/GABARAP family proteins: autophagy-(un)related functions. FASEB J. 30, 3961-3978. https://doi.org/10.1096/fj.201600698R
  92. Schiller, S. A., Seebode, C., Wieser, G. L., Goebbels, S., Mobius, W., Horowitz, M., Sarig, O., Sprecher, E. and Emmert, S. (2016) Establishment of two mouse models for CEDNIK syndrome reveals the pivotal role of SNAP29 in epidermal differentiation. J. Invest. Dermatol. 136, 672-679. https://doi.org/10.1016/j.jid.2015.12.020
  93. Sharma, G., Ojha, R., Noguera-Ortega, E., Rebecca, V. W., Attanasio, J., Liu, S., Piao, S., Lee, J. J., Nicastri, M. C., Harper, S. L., Ronghe, A., Jain, V., Winkler, J. D., Speicher, D. W., Mastio, J., Gimotty, P. A., Xu, X., Wherry, E. J., Gabrilovich, D. I. and Amaravadi, R. K. (2020) PPT1 inhibition enhances the antitumor activity of anti-PD-1 antibody in melanoma. JCI Insight 5, e133225. https://doi.org/10.1172/jci.insight.133225
  94. Singh, N., Miner, A., Hennis, L. and Mittal, S. (2021) Mechanisms of temozolomide resistance in glioblastoma - a comprehensive review. Cancer Drug Resist. 4, 17-43.
  95. Slobodkin, M. R. and Elazar, Z. (2013) The Atg8 family: multifunctional ubiquitin-like key regulators of autophagy. Essays Biochem. 55, 51-64. https://doi.org/10.1042/bse0550051
  96. Sotelo, J., Briceno, E. and Lopez-Gonzalez, M. A. (2006) Adding chloroquine to conventional treatment for glioblastoma multiforme: a randomized, double-blind, placebo-controlled trial. Ann. Intern. Med. 144, 337-343. https://doi.org/10.7326/0003-4819-144-5-200603070-00008
  97. Sou, Y. S., Waguri, S., Iwata, J., Ueno, T., Fujimura, T., Hara, T., Sawada, N., Yamada, A., Mizushima, N., Uchiyama, Y., Kominami, E., Tanaka, K. and Komatsu, M. (2008) The Atg8 conjugation system is indispensable for proper development of autophagic isolation membranes in mice. Mol. Biol. Cell 19, 4762-4775. https://doi.org/10.1091/mbc.E08-03-0309
  98. Takahashi, Y., Coppola, D., Matsushita, N., Cualing, H. D., Sun, M., Sato, Y., Liang, C., Jung, J. U., Cheng, J. Q., Mule, J. J., Pledger, W. J. and Wang, H. G. (2007) Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat. Cell Biol. 9, 1142-1151.
  99. Takamura, A., Komatsu, M., Hara, T., Sakamoto, A., Kishi, C., Waguri, S., Eishi, Y., Hino, O., Tanaka, K. and Mizushima, N. (2011) Autophagy-deficient mice develop multiple liver tumors. Genes Dev. 25, 795-800. https://doi.org/10.1101/gad.2016211
  100. Takanezawa, Y., Nakamura, R., Kojima, Y., Sone, Y., Uraguchi, S. and Kiyono, M. (2018) Cytochalasin E increased the sensitivity of human lung cancer A549cells to bortezomib via inhibition of autophagy. Biochem. Biophys. Res. Commun. 498, 603-608. https://doi.org/10.1016/j.bbrc.2018.03.029
  101. Tanaka, Y., Guhde, G., Suter, A., Eskelinen, E. L., Hartmann, D., Lullmann-Rauch, R., Janssen, P. M., Blanz, J., von Figura, K. and Saftig, P. (2000) Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice. Nature 406, 902-906. https://doi.org/10.1038/35022595
  102. Tang, F., Hu, P., Yang, Z., Xue, C., Gong, J., Sun, S., Shi, L., Zhang, S., Li, Z., Yang, C., Zhang, J. and Xie, C. (2017) SBI0206965, a novel inhibitor of Ulk1, suppresses non-small cell lung cancer cell growth by modulating both autophagy and apoptosis pathways. Oncol. Rep. 37, 3449-3458. https://doi.org/10.3892/or.2017.5635
  103. Tanida, I., Sou, Y. S., Ezaki, J., Minematsu-Ikeguchi, N., Ueno, T. and Kominami, E. (2004) HsAtg4B/HsApg4B/autophagin-1 cleaves the carboxyl termini of three human Atg8 homologues and delipidates microtubule-associated protein light chain 3- and GABAA receptorassociated protein-phospholipid conjugates. J. Biol. Chem. 279, 36268-36276. https://doi.org/10.1074/jbc.M401461200
  104. Towers, C. G. and Thorburn, A. (2016) Therapeutic targeting of autophagy. EBioMedicine 14, 15-23. https://doi.org/10.1016/j.ebiom.2016.10.034
  105. Vats, S. and Manjithaya, R. (2019) A reversible autophagy inhibitor blocks autophagosome-lysosome fusion by preventing Stx17 loading onto autophagosomes. Mol. Biol. Cell 30, 2283-2295. https://doi.org/10.1091/mbc.e18-08-0482
  106. Wang, C. C., Ng, C. P., Lu, L., Atlashkin, V., Zhang, W., Seet, L. F. and Hong, W. (2004) A role of VAMP8/endobrevin in regulated exocytosis of pancreatic acinar cells. Dev. Cell 7, 359-371. https://doi.org/10.1016/j.devcel.2004.08.002
  107. Wang, P., Burikhanov, R., Jayswal, R., Weiss, H. L., Arnold, S. M., Villano, J. L. and Rangnekar, V. M. (2018) Neoadjuvant administration of hydroxychloroquine in a phase 1 clinical trial induced plasma Par-4 levels and apoptosis in diverse tumors. Genes Cancer 9, 190-197. https://doi.org/10.18632/genesandcancer.181
  108. White, E., Mehnert, J. M. and Chan, C. S. (2015) Autophagy, metabolism, and cancer. Clin. Cancer Res. 21, 5037-5046. https://doi.org/10.1158/1078-0432.CCR-15-0490
  109. Wick, W., Gorlia, T., Bendszus, M., Taphoorn, M., Sahm, F., Harting, I., Brandes, A. A., Taal, W., Domont, J., Idbaih, A., Campone, M., Clement, P. M., Stupp, R., Fabbro, M., Le Rhun, E., Dubois, F., Weller, M., von Deimling, A., Golfinopoulos, V., Bromberg, J. C., Platten, M., Klein, M. and van den Bent, M. J. (2017) Lomustine and bevacizumab in progressive glioblastoma. N. Engl. J. Med. 377, 1954-1963. https://doi.org/10.1056/nejmoa1707358
  110. Wolpin, B. M., Rubinson, D. A., Wang, X., Chan, J. A., Cleary, J. M., Enzinger, P. C., Fuchs, C. S., McCleary, N. J., Meyerhardt, J. A., Ng, K., Schrag, D., Sikora, A. L., Spicer, B. A., Killion, L., Mamon, H. and Kimmelman, A. C. (2014) Phase II and pharmacodynamic study of autophagy inhibition using hydroxychloroquine in patients with metastatic pancreatic adenocarcinoma. Oncologist 19, 637-638. https://doi.org/10.1634/theoncologist.2014-0086
  111. Wu, M., Huang, Q., Xie, Y., Wu, X., Ma, H., Zhang, Y. and Xia, Y. (2022) Improvement of the anticancer efficacy of PD-1/PD-L1 blockade via combination therapy and PD-L1 regulation. J. Hematol. Oncol. 15, 24. https://doi.org/10.1186/s13045-022-01242-2
  112. Xiao, M., Benoit, A., Hasmim, M., Duhem, C., Vogin, G., Berchem, G., Noman, M. Z. and Janji, B. (2021) Targeting cytoprotective autophagy to enhance anticancer therapies. Front. Oncol. 11, 626309. https://doi.org/10.3389/fonc.2021.626309
  113. Xu, J., Su, Z., Cheng, X., Hu, S., Wang, W., Zou, T., Zhou, X., Song, Z., Xia, Y., Gao, Y. and Zheng, Q. (2022) High PPT1 expression predicts poor clinical outcome and PPT1 inhibitor DC661 enhances sorafenib sensitivity in hepatocellular carcinoma. Cancer Cell Int. 22, 115. https://doi.org/10.1186/s12935-022-02508-y
  114. Yamamoto, A., Tagawa, Y., Yoshimori, T., Moriyama, Y., Masaki, R. and Tashiro, Y. (1998) Bafilomycin A1 prevents maturation of autophagic vacuoles by inhibiting fusion between autophagosomes and lysosomes in rat hepatoma cell line, H-4-II-E cells. Cell Struct. Funct. 23, 33-42. https://doi.org/10.1247/csf.23.33
  115. Yang, S., Wang, X., Contino, G., Liesa, M., Sahin, E., Ying, H., Bause, A., Li, Y., Stommel, J. M., Dell'antonio, G., Mautner, J., Tonon, G., Haigis, M., Shirihai, O. S., Doglioni, C., Bardeesy, N. and Kimmelman, A. C. (2011) Pancreatic cancers require autophagy for tumor growth. Genes Dev. 25, 717-729. https://doi.org/10.1101/gad.2016111
  116. Yorimitsu, T. and Klionsky, D. J. (2005) Autophagy: molecular machinery for self-eating. Cell Death Differ. 12 Suppl 2, 1542-1552. https://doi.org/10.1038/sj.cdd.4401765
  117. Yu, L., Chen, Y. and Tooze, S. A. (2018) Autophagy pathway: cellular and molecular mechanisms. Autophagy 14, 207-215. https://doi.org/10.1080/15548627.2017.1378838
  118. Yuan, H., Li, A. J., Ma, S. L., Cui, L. J., Wu, B., Yin, L. and Wu, M. C. (2014) Inhibition of autophagy signi fi cantly enhances combination therapy with sorafenib and HDAC inhibitors for human hepatoma cells. World J. Gastroenterol. 20, 4953-4962. https://doi.org/10.3748/wjg.v20.i17.4953
  119. Yue, Z., Jin, S., Yang, C., Levine, A. J. and Heintz, N. (2003) Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc. Natl. Acad. Sci. U. S. A. 100, 15077-15082. https://doi.org/10.1073/pnas.2436255100
  120. Zhang, Y., Cheng, Y., Ren, X., Zhang, L., Yap, K. L., Wu, H., Patel, R., Liu, D., Qin, Z. H., Shih, I. M. and Yang, J. M. (2012) NAC1 modulates sensitivity of ovarian cancer cells to cisplatin by altering the HMGB1-mediated autophagic response. Oncogene 31, 1055-1064. https://doi.org/10.1038/onc.2011.290
  121. Zhao, H., Zhao, Y. G., Wang, X., Xu, L., Miao, L., Feng, D., Chen, Q., Kovacs, A. L., Fan, D. and Zhang, H. (2013) Mice deficient in Epg5 exhibit selective neuronal vulnerability to degeneration. J. Cell Biol. 200, 731-741. https://doi.org/10.1083/jcb.201211014
  122. Zhou, W., Guo, Y., Zhang, X. and Jiang, Z. (2020) Lys05 induces lysosomal membrane permeabilization and increases radiosensitivity in glioblastoma. J. Cell. Biochem. 121, 2027-2037. https://doi.org/10.1002/jcb.29437
  123. Zhou, X., Takatoh, J. and Wang, F. (2011) The mammalian class 3 PI3K (PIK3C3) is required for early embryogenesis and cell proliferation. PLoS One 6, e16358.  https://doi.org/10.1371/journal.pone.0016358