• 제목/요약/키워드: Autophagy inhibitor

검색결과 93건 처리시간 0.024초

Induction of cytoprotective autophagy by morusin via AMP-activated protein kinase activation in human non-small cell lung cancer cells

  • Park, Hyun-Ji;Park, Shin-Hyung
    • Nutrition Research and Practice
    • /
    • 제14권5호
    • /
    • pp.478-489
    • /
    • 2020
  • BACKGROUND/OBJECTIVES: Morusin, a marker component of Morus alba L., possesses anti-cancer activity. The objective of this study was to determine autophagy-inducing effect of morusin in non-small cell lung cancer (NSCLC) cells and investigate the underlying mechanism. SUBJECTS/METHODS: Autophagy induction and the expression of autophagy-related proteins were analyzed by LC3 immunofluorescence and western blot, respectively. The role of autophagy and AMP-activated protein kinase (AMPK) was determined by treating NSCLC cells with bafilomycin A1, an autophagy inhibitor, and compound C, an AMPK inhibitor. Cytotoxicity and apoptosis induction were determined by MTT assay, trypan blue exclusion assay, annexin V-propidium iodide (PI) double staining assay, and cell cycle analysis. RESULTS: Morusin increased the formation of LC3 puncta in the cytoplasm and upregulated the expression of autophagy-related 5 (Atg5), Atg12, beclin-1, and LC3II in NSCLC cells, demonstrating that morusin could induce autophagy. Treatment with bafilomycin A1 markedly reduced cell viability but increased proportions of sub-G1 phase cells and annexin V-positive cells in H460 cells. These results indicate that morusin can trigger autophagy in NSCLC cells as a defense mechanism against morusin-induced apoptosis. Furthermore, we found that AMPK and its downstream acetyl-CoA carboxylase (ACC) were phosphorylated, while mammalian target of rapamycin (mTOR) and its downstream p70S6 kinase (p70S6K) were dephosphorylated by morusin. Morusin-induced apoptosis was significantly increased by treatment with compound C in H460 cells. These results suggest that morusin-induced AMPK activation could protect NSCLC cells from apoptosis probably by inducing autophagy. CONCLUSIONS: Our findings suggest that combination treatment with morusin and autophagy inhibitor or AMPK inhibitor might enhance the clinical efficacy of morusin for NSCLC.

Biphasic Activity of Chloroquine in Human Colorectal Cancer Cells

  • Park, Deokbae;Lee, Youngki
    • 한국발생생물학회지:발생과생식
    • /
    • 제18권4호
    • /
    • pp.225-231
    • /
    • 2014
  • Autophagy is a homeostatic degradation process that is involved in tumor development and normal development. Autophagy is induced in cancer cells in response to chemotherapeutic agents, and inhibition of autophagy results in enhanced cancer cell death or survival. Chloroquine (CQ), an anti-malarial drug, is a lysosomotropic agent and is currently used as a potential anticancer agent as well as an autophagy inhibitor. Here, we evaluate the characteristics of these dual activities of CQ using human colorectal cancer cell line HCT15. The results show that CQ inhibited cell viability in dose- and time-dependent manner in the range between 20 to 80 uM, while CQ did not show any antiproliferative activity at 5 and 10 uM. Cotreatment of CQ with antitumor agent NVP-BEZ235, a dual inhibitor of PI3K/mTOR, rescued the cell viability at low concentrations meaning that CQ acted as an autophagy inhibitor, but CQ induced the lethal effect at high concentrations. Acridine orange staining revealed that CQ at high doses induced lysosomal membrane permeabilization (LMP). High doses of CQ produced cellular reactive oxygen species (ROS) and cotreatment of antioxidants, such as NAC and trolox, with high doses of CQ rescued the cell viability. These results suggest that CQ may exert its dual activities, as autophagy inhibitor or LMP inducer, in concentration-dependent manner.

17-DMAG이 마우스 골격근에서 autophagy flux에 미치는 영향 (Effects of 17-DMAG Administration on Autophagy Flux in Mouse Skeletal Muscle)

  • 주정선;이유현
    • 생명과학회지
    • /
    • 제26권4호
    • /
    • pp.387-397
    • /
    • 2016
  • 본 연구는 17-DMAG이 골격근에서 autophagy에 관여하는 가를 조사하기 위해, C2C12세포와 마우스 골격근에서 17-DMAG (Hsp90 억제제/Hsp72 활성제)을 처치하는 그룹과 autophagy 억제제(Bafilomycin 또는 colchicine)를 처치하는 그룹과 처치하지 않는 그룹을 동시에 두고 autophagy flux를 측정하였다. C2C12 배양세포에서 17-DMAG이 Hsp90 억제/hsp72 활성화시켰으며 Akt-mTOR 신호체계를 유의하게 감소시켰지만(p<0.05) autophagy marker 단백질인 LC3 II와 p62를 증가시키지 않았다. in vivo 모델의 경우 17-DMAG 처치가 배양세포에서 발견된 것처럼 Hsp90억제/hsp72를 활성화시켰고 Akt-mTOR 신호체계를 유의하게 감소시켰다(p<0.05). 반면 LC3 II와 p62 단백질 수준은 autophagy 억제제(colchicine) 처치 수준보다 더 높게 증가되었다. 이는 17-DMAG이 골격근에서 autophagy를 증가시키지만 C2C12 배양세포에서는 autophagy의 활성화가 제한적임을 암시한다. 현재 이러한 in vitro와 in vivo 모델에서의 차이는 불분명하다.

Celecoxib의 apoptotic 및 autophagic cell death 유도에 의한 항암제 다제내성 암세포의 17-allylamino-17-demethoxygeldanamycin 감수성 증강 (Celecoxib Enhances Susceptibility of Multidrug Resistant Cancer Cells to 17-Allylamino-17-demethoxy geldanamycin through Dual Induction of Apoptotic and Autophagic Cell Death)

  • 문현정;박소영;이수훈;강치덕;김선희
    • 생명과학회지
    • /
    • 제28권7호
    • /
    • pp.778-785
    • /
    • 2018
  • 오토파지(Autophagy, 자가포식)는 복합적인 신호과정으로, 암세포의 증식 억제 및 항암제에 대한 내성 획득의 상반적인 조절에도 관여한다. 오토파지의 암 억제 효과는 아팝토시스(apoptosis)와 상호협력으로 오토파지성세포 사멸의 유도에 기인된다. 본 연구에서는 NSAID 계열의 다기능 약물인 celecoxib (CCB)이 아팝토시스 및 오토파지의 복합적인 유도로, 항암제 다제내성(multidrug resistant, MDR) 암세포의 Hsp90 molecular chaperone inhibitor인 17-allylamino-17-demethoxygeldanamycin (17-AAG)에 대한 감수성을 증가시키는 활성이 있음을 밝혔다. 17-AAG 처리에 의한 항암제 다제내성 암세포의 변이형p53 분해 및 caspase-3 활성은 CCB 처리로 촉진되었다. MCF7-MDR세포에서 Z-DEVD-FMK 처리에 의한 caspase-3-매개의 아팝토시스 경로 차단은 CCB 유도의 세포 사멸을 완전히 차단시키지 못함을 알 수 있었으며, 또한 17-AAG과 CCB 병합 처리에 의한 오토파지 활성화는 Z-DEVD-FMK에 의해 방해되지 않는 것을 알 수 있었다. 본 연구의 결과를 토대로, CCB의 오토파지 유도 활성은 항암제 다제내성 암의 Hsp90 inhibitor에 대한 감수성 증가를 위한 약물 개발에, CCB가 효과적인 병용 약물로서 제안 될 수 있다.

Autophagy-Dependent Survival of Mutant B-Raf Melanoma Cells Selected for Resistance to Apoptosis Induced by Inhibitors against Oncogenic B-Raf

  • Ahn, Jun-Ho;Lee, Michael
    • Biomolecules & Therapeutics
    • /
    • 제21권2호
    • /
    • pp.114-120
    • /
    • 2013
  • Most patients with mutant B-Raf melanomas respond to inhibitors of oncogenic B-Raf but resistance eventually emerges. To better understand the mechanisms that determine the long-term responses of mutant B-Raf melanoma cells to B-Raf inhibitor, we used chronic selection to establish B-Raf (V600E) melanoma clones with acquired resistance to the new oncogenic B-Raf inhibitor UI-152. Whereas the parental A375P cells were highly sensitive to UI-152 ($IC_{50}$ < $0.5{\mu}M$), the resistant sub-line (A375P/Mdr) displayed strong resistance to UI-152 ($IC_{50}$ < $20{\mu}M$). Immunofluorescence analysis indicated the absence of an increase in the levels of P-glycoprotein multidrug resistance (MDR) transporter in A375P/Mdr cells, suggesting that resistance was not attributable to P-glycoprotein overexpression. In UI-152-sensitive A375P cells, the anti-proliferative activity of UI-152 appeared to be due to cell-cycle arrest at $G_0/G_1$ with the induction of apoptosis. However, we found that A375P/Mdr cells were resistant to the apoptosis induced by UI-152. Interestingly, UI-152 preferentially induced autophagy in A375P/Mdr cells but not in A375P cells, as determined by GFP-LC3 puncta/cell counts. Further, autophagy inhibition with 3-methyladenine (3-MA) partially augmented growth inhibition of A375P/Mdr cells by UI-152, which implies that a high level of autophagy may protect UI-152-treated cells from undergoing growth inhibition. Together, our data implicate high rates of autophagy as a key mechanism of acquired resistance to the oncogenic B-Raf inhibitor, in support of clinical studies in which combination therapy with autophagy targeted drugs is being designed to overcome resistance.

Autophagy Inhibition Promotes Quercetin Induced Apoptosis in MG-63 Human Osteosarcoma cells

  • Park, Sung-Jin;Yu, Su-Bin;Kim, Yong-Ho;Kim, In-Ryoung;Park, Hae-Ryoun;Park, Bong-Soo
    • International Journal of Oral Biology
    • /
    • 제40권2호
    • /
    • pp.85-91
    • /
    • 2015
  • Quercetin is a natural flavonoid phytochemical that is extracted from various plants. Having an advantages due to its varied biological properties, such as anti-inflammatory, anti-viral, anti-oxidant, and anti-cancer effects, quercetin is used to treat many diseases. Recently, it has been reported that autophagy inhibition may play a key role in anti-cancer therapy. Therefore, in this study, we investigated the molecular mechanisms and anti-cancer effects of quercetin in human osteosarcoma cells via autophagy inhibition. We ascertained that quercetin inhibited cell proliferation and induced cell death, these process is demonstrated that apoptosis via the mitochondrial pathway and the caspase cascade. Quercetin also induced autophagy which was inhibited by 3-MA, autophagy inhibitor and the blockade of autophagy promoted the quercetin-induced apoptosis, confirming that autophagy is a pro-survival process. Thus, these findings demonstrate that quercetin is an effective anti-cancer agent, and the combination of quercetin and an autophagy inhibitor should enhance the effect of anti-cancer therapy.

Src Family Kinase Inhibitor PP2 Induces LC3 Conversion in a Manner That is Uncoupled from Autophagy and Increases Apoptosis in Multidrug-Resistant Cells

  • Kim, Yun-Ki;Ahn, Jun-Ho;Lee, Mi-Chael
    • Biomolecules & Therapeutics
    • /
    • 제20권4호
    • /
    • pp.393-398
    • /
    • 2012
  • Recently, we reported that defective autophagy may contribute to the inhibition of the growth in response to PP2 (4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine), a selective SFK inhibitor, in multidrug-resistant v-Ha-ras-transformed NIH 3T3 cells (Ras-NIH 3T3/Mdr). In this study, we demonstrated that PP2 induces LC3 conversion via a mechanism that is uncoupled from autophagy and increases apoptosis in Ras-NIH 3T3/Mdr cells. PP2 preferentially induced autophagy in Ras-NIH 3T3 cells rather than in Ras-NIH 3T3/Mdr cells as determined by LC3-I to LC3-II conversion and GFP-LC3 fluorescence microscopy. Beclin 1 knockdown experiments showed that, regardless of drug resistance, PP2 induces autophagy via a Beclin 1-dependent mechanism. PP2 induced a conformational change in Beclin 1, resulting in the enhancement of the pro-autophagic activity of Beclin 1, in Ras-NIH 3T3 cells. Further, PI3K inhibition induced by wortmannin caused a significant increase in apoptosis in Ras-NIH 3T3 cells, as demonstrated by flow cytometric analysis of Annexin V staining, implying that autophagy inhibition through PI3K increases apoptosis in response to PP2 in Ras-NIH 3T3 cells. However, despite the fact that wortmannin abrogates PP2-induced GFP-LC3 punctae formation, some LC3 conversion remains in Ras-NIH 3T3/Mdr cells, suggesting that LC3 conversion may occur in an autophagy-independent manner. Taken together, these results suggest that PP2 induces LC3 conversion independent of PI3K, concomitant with the uncoupling of LC3 conversion from autophagy, in multidrug-resistant cells.

PARP1 Impedes SIRT1-Mediated Autophagy during Degeneration of the Retinal Pigment Epithelium under Oxidative Stress

  • Jang, Ki-Hong;Hwang, Yeseong;Kim, Eunhee
    • Molecules and Cells
    • /
    • 제43권7호
    • /
    • pp.632-644
    • /
    • 2020
  • The molecular mechanism underlying autophagy impairment in the retinal pigment epithelium (RPE) in dry age-related macular degeneration (AMD) is not yet clear. Based on the causative role of poly(ADP-ribose) polymerase 1 (PARP1) in RPE necrosis, this study examined whether PARP1 is involved in the autophagy impairment observed during dry AMD pathogenesis. We found that autophagy was downregulated following H2O2-induced PARP1 activation in ARPE-19 cells and olaparib, PARP1 inhibitor, preserved the autophagy process upon H2O2 exposure in ARPE-19 cells. These findings imply that PARP1 participates in the autophagy impairment upon oxidative stress in ARPE-19 cells. Furthermore, PARP1 inhibited autolysosome formation but did not affect autophagosome formation in H2O2-exposed ARPE-19 cells, demonstrating that PARP1 is responsible for impairment of late-stage autophagy in particular. Because PARP1 consumes NAD+ while exerting its catalytic activity, we investigated whether PARP1 impedes autophagy mediated by sirtuin1 (SIRT1), which uses NAD+ as its cofactor. A NAD+ precursor restored autophagy and protected mitochondria in ARPE-19 cells by preserving SIRT1 activity upon H2O2. Moreover, olaparib failed to restore autophagy in SIRT1-depleted ARPE-19 cells, indicating that PARP1 inhibits autophagy through SIRT1 inhibition. Next, we further examined whether PARP1-induced autophagy impairment occurs in the retinas of dry AMD model mice. Histological analyses revealed that olaparib treatment protected mouse retinas against sodium iodate (SI) insult, but not in retinas cotreated with SI and wortmannin, an autophagy inhibitor. Collectively, our data demonstrate that PARP1-dependent inhibition of SIRT1 activity impedes autophagic survival of RPE cells, leading to retinal degeneration during dry AMD pathogenesis.

Blockage of Autophagy Rescues the Dual PI3K/mTOR Inhibitor BEZ235-induced Growth Inhibition of Colorectal Cancer Cells

  • Oh, Iljoong;Cho, Hyunchul;Lee, Yonghoon;Cheon, Minseok;Park, Deokbae;Lee, Youngki
    • 한국발생생물학회지:발생과생식
    • /
    • 제20권1호
    • /
    • pp.1-10
    • /
    • 2016
  • Molecular targeting for the altered signaling pathways has been proven to be effective for the treatment of many types of human cancer, including colorectal cancer (CRC). The dual phosphatidylinositol-3-kinase (PI3K) and mammalian target of rapamycin (mTOR) inhibitor BEZ235 has shown to exhibit potent antitumor activity against solid tumors. Autophagy is a cellular lysosomal catabolic process to maintain metabolic homeostasis, which has been known to be induced in response to many therapeutic agents in cancer cells. This process is negatively regulated by mTOR and often acts as prosurvival or prodeath mechanism following cancer therapeutics. The current study was designed to investigate the antiproliferation activity of BEZ235 and to evaluate the role of autophagy induced by BEZ235 using HCT15 CRC cells bearing ras oncogene mutation. We found that BEZ235 decreases cell viability, which was mostly dependent on $G_1$ arrest of cell cycle via suppression of cyclin A expression. BEZ235 affects PI3K/Akt/mTOR signaling pathway by increasing the phosphorylation of AKT at $Ser^{473}$ and RAS/RAF/MEK/ERK pathway by decreasing the phosphorylation of ERK at $Tyr^{204}$. BEZ235 also stimulated autophagy induction as evidenced by the increased expression of LC3-II and abundant acidic vesicular organelles (AVOs) in the cytoplasm. In addition, the combination of BEZ235 with autophagy inhibitor chloroquine, a known antagonist of autophagy, counteracted the antiproliferation effect of BEZ235. Thus, our study indicates that autophagy induced in response to BEZ235 treatment appears to act as cell death mechanism in HCT15 CRC cells.

Differential Sensitivity of Wild-Type and BRAF-Mutated Cells to Combined BRAF and Autophagy Inhibition

  • Yeom, Hojin;Hwang, Sung-Hee;Han, Byeal-I;Lee, Michael
    • Biomolecules & Therapeutics
    • /
    • 제29권4호
    • /
    • pp.434-444
    • /
    • 2021
  • BRAF inhibitors are insufficient monotherapies for BRAF-mutated cancer; therefore, we investigated which inhibitory pathway would yield the most effective therapeutic approach when targeted in combination with BRAF inhibition. The oncogenic BRAF inhibitor, PLX4720, increased basal autophagic flux in BRAF-mutated cells compared to wild-type (WT) BRAF cells. Interestingly, early autophagy inhibition improved the effectiveness of PLX4720 regardless of BRAF mutation, whereas late autophagy inhibition did not. Although ATG5 knockout led to PLX4720 resistance in both WT and BRAF-mutated cells, the MEK inhibitor trametinib exhibited a synergistic effect on PLX4720 sensitivity in WT BRAF cells but not in BRAF-mutated cells. Conversely, the prolonged inhibition of endoplasmic reticulum (ER) stress reduced basal autophagy in BRAF-mutated cells, thereby increasing PLX4720 sensitivity. Taken together, our results suggest that the combined inhibition of ER stress and BRAF may simultaneously suppress both pro-survival ER stress and autophagy, and may therefore be suitable for treatment of BRAF-mutated tumors whose autophagy is increased by chronic ER stress. Similarly, for WT BRAF tumors, therapies targeting MEK signaling may be a more effective treatment strategy. Together, this study presents a rational combination treatment strategy to improve the efficacy of BRAF inhibitors depending on BRAF mutation status.