과제정보
The research described in this paper was financially supported by the National Key Research & Development Program of China (2022YFC3801201).
참고문헌
- Bu, Z.Y., Ding, Y. and Li, Y.S. (2012), "Investigation of the seismic performance of precast segmental tall bridge columns", Struct. Eng. Mech., 43(3), 287-309. https://doi.org/10.12989/sem.2012.43.3.287.
- Cai, Z.K., Wei, Y., Wang, Z.Y. and Smith, S.T. (2021), "Seismic behavior of precast segmental bridge columns reinforced with hybrid FRP-steel bars", Eng. Struct., 228, 111484. https://doi.org/10.1016/j.engstruct.2020.111484.
- Cai, Z.K., Zhou, Z. and Wang, Z.Y. (2019), "Influencing factors of residual drifts of precast segmental bridge columns with energy dissipation bars", Adv. Struct. Eng., 22(1), 126-140. https://doi.org/10.1177/1369433218780545.
- Ghiamat, R., Madhkhan, M. and Bakhshpoori, T. (2019), "Cost optimization of segmental precast concrete bridges superstructure using genetic algorithm", Struct. Eng. Mech., 72(4), 503-512. https://doi.org/10.12989/sem.2019.72.4.503.
- Jia, J.F., Zhao, J.Y. and Zhang, Q. (2017), "Cyclic testing on seismic behavior of precast segmental CFST bridge piers with bolted connection", Chin. J. Highw. Transp., 30(12), 242-249.
- Kim, D.H., Moon, D.Y., Kim, M.K., Zi, G. and Roh, H. (2015), "Experimental test and seismic performance of partial precast concrete segmental bridge column with cast-in-place base", Eng. Struct., 100, 178-188. https://doi.org/10.1016/j.engstruct.2015.05.034.
- Kwak, H.G. and Shin, S.K. (2009), "An improved pushover analysis procedure for multi-mode seismic performance evaluation of bridges: (1) Introduction to numerical model", Struct. Eng. Mech., 33(2), 215-238. https://doi.org/10.12989/sem.2009.33.2.215.
- Lee, H.W., Bames, R.W. and Kim, K.Y. (2003), "A continuity method for bridges constructed with precast prestressed concrete girders", Struct. Eng. Mech., 17(6), 879-898. https://doi.org/10.12989/sem.2004.17.6.879.
- Li, C., Hao, H. and Bi, K.M. (2019), "Numerical study on the seismic performance of precast segmental concrete columns under cyclic loading", Eng. Struct., 148, 373-386. https://doi.org/10.1016/j.engstruct.2017.06.062.
- Mander, J.B., Priestley, M.J.N. and Park, R. (1988), "Theoretical stress-strain model for confined concrete", J. Struct. Eng., 114(8), 1804-1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804).
- Mantawy, I.M., Thonstad, T., Sanders, D.H. and Stanton, J.F. (2016), "Seismic performance of precast, pretensioned, and cast-in-place bridges: Shake table test comparison", J. Bridge Eng., 21(10), 04016071. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000934.
- Menegotto, M. and Pinto, P.E. (1973), "Method of analysis for cyclically loaded R.C. plane frames including changes in geometry and non-elastic behavior of elements under combined normal force and bending", Proceedings of IABSE Symposium, 15-22.
- Moyo, P., Sibanda, B. and Beushausen, H. (2012), "Modelling and integrity assessment of shear connectors in precast cast-in-situ concrete bridges", Struct. Eng. Mech., 42(1), 55-72. https://doi.org/10.12989/sem.2012.42.1.055.
- Park, R. (1989), "Evaluation of ductility of structures and structural assemblages from laboratory testing", Bull. NZ Nat. Soc. Earthq. Eng., 22(3), 155-166. https://doi.org/10.5459/bnzsee.22.3.155-166.
- Saiidi, M.S. and Bush, A. (2006), "Ultimate and fatigue response of shear dominated full-scale pretensioned concrete box girders", Struct. Eng. Mech., 23(4), 353-367. https://doi.org/10.12989/sem.2006.23.4.353.
- Shim, C., Chung, C. and Kim, H. (2008), "Experimental evaluation of seismic performance of precast segmental bridge pies with a circular solid section", Eng. Struct., 30(12), 3782-3792. https://doi.org/10.1016/j.engstruct.2008.07.005.
- Tin, V.D., Thong, M.P. and Hao, H. (2019), "Effects of steel confinement and shear keys on the impact responses of precast concrete segmental columns", J. Constr. Steel Res., 158, 331-349. https://doi.org/10.1016/j.jcsr.2019.04.008.
- Wang, J.Q., Wang, Z., Gao, Y.F. and Zhu, J.Z. (2019), "Review on seismic behavior of precast assembly piers: New material, mew concept, new application", Eng. Mech., 36(3), 1- 23.
- Wang, Z., Qu, H., Li, T., Wei, H., Wang, H., Duan, H. and Jiang, H. (2018), "Quasi-static cyclic tests of precast bridge columns with different connection details for high seismic zones", Eng. Struct., 158, 13-27. https://doi.org/10.1016/j.engstruct.2017.12.035.
- Wang, Z., Wang, J.Q., Tang, Y.C. and Gao, Y.F. (2019), "Lateral behavior of precast segmental UHPC bridge columns based on the equivalent plastic-hinge model", J. Bridge Eng., 24(3), 04018124. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001332.
- Wang, Z., Wang, J.Q., Zhao, G.T. and Zhang, J. (2020), "Modeling seismic behavior of precast segmental UHPC bridge columns in a simplified method", Bull. Earthq. Eng., 18(7), 3317-3349. https://doi.org/10.1007/s10518-020-00817-z.
- Xia, Z.H., Ge, J.P., Lin, Y.Q. and Qiu, F.Q. (2020), "Shake table study on precast segmental concrete double-column piers", Earthq. Eng. Eng. Vib., 19(3), 705-723. https://doi.org/10.1007/s11803-020-0590-x.
- Zhang, Q. and Shahria, A.M. (2020), "State-of-the-art review of seismic-resistant precast bridge columns", J. Bridge Eng., 25(10), 03120001. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001620.
- Zhuo, W.D., Tong, T. and Liu, Z. (2019), "Analytical pushover method and hysteretic modeling of precast segmental bridge piers with high-strength bars based on cyclic loading test", J. Struct. Eng., 145(7), 04019050. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002318.