DOI QR코드

DOI QR Code

In vitro toxicological assessment of PhSeZnCl in human liver cells

  • Rafaella, di Vito (Department of Pharmaceutical Sciences (Unit of Public Health), University of Perugia) ;
  • Sara, Levorato (Department of Pharmaceutical Sciences (Unit of Public Health), University of Perugia) ;
  • Cristina, Fatigoni (Department of Pharmaceutical Sciences (Unit of Public Health), University of Perugia) ;
  • Mattia, Acito (Department of Pharmaceutical Sciences (Unit of Public Health), University of Perugia) ;
  • Luca, Sancineto (Department of Pharmaceutical Sciences (Group of Catalysis Synthesis and Organic Green Chemistry), University of Perugia) ;
  • Giovanna, Traina (Department of Pharmaceutical Sciences (Unit of Physiology), University of Perugia) ;
  • Milena, Villarini (Department of Pharmaceutical Sciences (Unit of Public Health), University of Perugia) ;
  • Claudio, Santi (Department of Pharmaceutical Sciences (Group of Catalysis Synthesis and Organic Green Chemistry), University of Perugia) ;
  • Massimo, Moretti (Department of Pharmaceutical Sciences (Unit of Public Health), University of Perugia)
  • Received : 2021.09.17
  • Accepted : 2022.07.05
  • Published : 2023.01.15

Abstract

Phenylselenenylzinc chloride (PhSeZnCl) is an air-stable selenolate, easily synthesizable through oxidative insertion of elemental zinc into the Se-halogen bond of the commercially available phenylselenyl chloride. PhSeZnCl was shown to possess a marked GPx-like activity both in NMR and in vitro tests, and to effectively react with cellular thiols, and was supposed for a potential use in the chemotherapy of drug-resistant cancers. However, activity of PhSeZnCl in hepatic cells has never been tested before now. In this in vitro approach, we evaluated the cytotoxic, genotoxic, and apoptotic activities, as well as the effects on cell cycle of PhSeZnCl in two preclinical hepatic models, namely HepG2 and HepaRG cells. Results showed that cell viability of HepG2 and HepaRG cells decreased in a dose-dependent manner, with a more marked effect in HepG2 tumour cells. Moreover, treatment with 50 ㎍/mL PhSeZnCl caused an increase of primary DNA damage (4 h) and a statistically significant increase of HepG2 cells arrested in G2/M phase. In addition, it altered mitochondrial membrane potential and induced chromosomal DNA fragmentation (24 h). In HepaRG cells, PhSeZnCl was able to determine a cell cycle-independent induction of apoptosis. Particularly, 50 ㎍/mL induced mitochondrial membrane depolarization after 24 h and apoptosis after 4 h treatment. Futhermore, all PhSeZnCl concentrations tested determined a significant increase of apoptotic cells after 24 h. Apoptosis was also highlighted by the detection of active Caspase-3 by Western Blot analysis after 24 h exposure. In conclusion, this first toxicological assessment provides new insights into the biological activity of PhSeZnCl in preclinical hepatic models that will be useful in future safety assessment investigation of this compound as a potential pharmaceutical.

Keywords

Acknowledgement

This research is part of the scientific activity of the multidisciplinary group "SeS redox and catalysis" at the Department of Pharmaceutical Sciences, University of Perugia, Italy.

References

  1. Birringer M, Pilawa S, Flohe L (2002) Trends in selenium bio-chemistry. Nat Prod Rep 19:693-718. https://doi.org/10.1039/b205802m 
  2. Schwarz K, Foltz CM (1999) Selenium as an integral part of factor 3 against dietary necrotic liver degeneration. 1957. J Am Chem Soc 79:3292-3293. https://doi.org/10.1021/ja01569a087 
  3. Flohe L, Gunzler WA, Schock HH (1973) Glutathione peroxidase: a selenoenzyme. FEBS Lett 32:132-134. https://doi.org/10.1016/0014-5793(73)80755-0 
  4. Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science 179:588-590. https://doi.org/10.1126/science.179.4073.588 
  5. Lu J, Holmgren A (2009) Selenoproteins. J Biol Chem 284:723-727. https://doi.org/10.1074/jbc.R800045200 
  6. Papp LV, Lu J, Holmgren A, Khanna KK (2007) From selenium to selenoproteins: synthesis, identity, and their role in human health. Antioxid Redox Signal 9:775-806. https://doi.org/10.1089/ars.2007.1528 
  7. Weekley CM, Harris HH (2013) Which form is that? The importance of selenium speciation and metabolism in the prevention and treatment of disease. Chem Soc Rev 42:8870-8894. https://doi.org/10.1039/c3cs60272a 
  8. Shamberger RJ, Frost DV (1969) Possible protective effect of selenium against human cancer. Can Med Assoc J 100:682 
  9. Chen Z, Lai H, Hou L, Chen T (2019) Rational design and action mechanisms of chemically innovative organoselenium in cancer therapy. Chem Commun Camb Engl 56:179-196. https://doi.org/10.1039/c9cc07683b 
  10. Hatfield DL, Tsuji PA, Carlson BA, Gladyshev VN (2014) Selenium and selenocysteine: roles in cancer, health, and development. Trends Biochem Sci 39:112-120. https://doi.org/10.1016/j.tibs.2013.12.007 
  11. Ip C, Lisk DJ, Ganther HE (2000) Chemoprevention with triphenylselenonium chloride in selenium-deficient rats. Anticancer Res 20:4179-4182 
  12. Terazawa R, Garud DR, Hamada N, Fujita Y, Itoh T, Nozawa Y, Nakane K, Deguchi T, Koketsu M, Ito M (2010) Identification of organoselenium compounds that possess chemopreventive properties in human prostate cancer LNCaP cells. Bioorg Med Chem 18:7001-7008. https://doi.org/10.1016/j.bmc.2010.08.019 
  13. Drake EN (2006) Cancer chemoprevention: selenium as a prooxidant, not an antioxidant. Med Hypothes 67:318-322. https://doi.org/10.1016/j.mehy.2006.01.058 
  14. Elango S, Subbiah U, Jain J (2016) Differential behaviour of selenium analogs against anticancer drug induced apoptosis of lymphocytes in human peripheral blood. Asian Pac J Cancer Prev APJCP 17:2527-2533. https://doi.org/10.7314/APJCP.2016.17.5.2527 
  15. Santi C, Battistelli B, Testaferri L, Tiecco M (2012) On water preparation of phenylselenoesters. Green Chem 14:1277-1280. https://doi.org/10.1039/C2GC16541D 
  16. Santi C, Santoro S, Battistelli B, Testaferri L, Tiecco M (2008) Preparation of the first bench-stable phenyl selenolate: an interesting "on water" nucleophilic reagent. Eur J Org Chem 2008:5387-5390. https://doi.org/10.1002/ejoc.200800869 
  17. Bartolini D, Piroddi M, Tidei C, Giovagnoli S, Pietrella D, Manevich Y, Tew KD, Giustarini D, Rossi R, Townsend DM, Santi C, Galli F (2015) Reaction kinetics and targeting to cellular glutathione s-transferase of the glutathione peroxidase mimetic PhSeZnCl and its D, L-polylactide microparticle formulation. Free Radic Biol Med 78:56-65. https://doi.org/10.1016/j.freeradbiomed.2014.10.008 
  18. Galant LS, Rafique J, Braga AL, Braga FC, Saba S, Radi R, da Rocha JBT, Santi C, Monsalve M, Farina M, de Bem AF (2020) The thiol-modifier effects of organoselenium compounds and their cytoprotective actions in neuronal cells. Neurochem Res. https://doi.org/10.1007/s11064-020-03026-x 
  19. Tidei C, Piroddi M, Galli F, Santi C (2012) Oxidation of thiols promoted by PhSeZnCl. Tetrahedron Lett 53:232-234. https://doi.org/10.1016/j.tetlet.2011.11.025 
  20. Qureshi ZP, Seoane-Vazquez E, Rodriguez-Monguio R, Stevenson KB, Szeinbach SL (2011) Market withdrawal of new molecular entities approved in the United States from 1980 to 2009. Pharmacoepidemiol Drug Saf 20:772-777. https://doi.org/10.1002/pds.2155 
  21. Acito M, Bartolini D, Ceccarini MR, Russo C, Vannini S, Dominici L, Codini M, Villarini M, Galli F, Beccari T, Moretti M (2020) Imbalance in the antioxidant defence system and pro-genotoxic status induced by high glucose concentrations: in vitro testing in human liver cells. Toxicol Vitro Int J Publ Assoc BIBRA 69:105001. https://doi.org/10.1016/j.tiv.2020.105001 
  22. Villarini M, Acito M, di Vito R, Vannini S, Dominici L, Fatigoni C, Pagiotti R, Moretti M (2021) Pro-apoptotic activity of artichoke leaf extracts in human HT-29 and RKO colon cancer cells. Int J Environ Res Public Health 18:4166. https://doi.org/10.3390/ijerph18084166 
  23. NICEATM (2003) Test method protocol for solubility determination: in Vitro cytotoxicity validation study, phase III. National Toxicology Program (NTP) Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM), Research Triangle Park, NC, USA 
  24. FDA (2012) International Conference on Harmonisation; Guidance on S2(R1) genotoxicity testing and data interpretation for pharmaceuticals intended for human use (food and drug administration). Fed Reg 77:33748-33749 
  25. OECD (2015) Guidance document on revisions to OECD genetic toxicology test guidelines. November, 2015. Organization for Economic Co-operation and Development (OECD), Paris, France 
  26. Aden DP, Fogel A, Plotkin S, Damjanov I, Knowles BB (1979) Controlled synthesis of HBsAg in a differentiated human liver carcinoma-derived cell line. Nature 282:615-616. https://doi.org/10.1038/282615a0 
  27. Knowles BB, Howe CC, Aden DP (1980) Human hepatocellular carcinoma cell lines secrete the major plasma proteins and hepatitis B surface antigen. Science 209:497-499. https://doi.org/10.1126/science.6248960 
  28. Lopez-Terrada D, Cheung SW, Finegold MJ, Knowles BB (2009) Hep G2 is a hepatoblastoma-derived cell line. Hum Pathol 40:1512-1515. https://doi.org/10.1016/j.humpath.2009.07.003 
  29. Donato MT, Tolosa L, Gomez-Lechon MJ (2015) Culture and functional characterization of human hepatoma HepG2 cells. Methods Mol Biol Clifton NJ 1250:77-93. https://doi.org/10.1007/978-1-4939-2074-7_5 
  30. Knasmuller S, Parzefall W, Sanyal R, Ecker S, Schwab C, Uhl M, Mersch-Sundermann V, Williamson G, Hietsch G, Langer T, Darroudi F, Natarajan AT (1998) Use of metabolically competent human hepatoma cells for the detection of mutagens and antimutagens. Mutat Res 402:185-202. https://doi.org/10.1016/s0027-5107(97)00297-2 
  31. Gripon P, Rumin S, Urban S, Le Seyec J, Glaise D, Cannie I, Guyomard C, Lucas J, Trepo C, Guguen-Guillouzo C (2002) Infection of a human hepatoma cell line by hepatitis B virus. Proc Natl Acad Sci USA 99:15655-15660. https://doi.org/10.1073/pnas.232137699 
  32. Hart SN, Li Y, Nakamoto K, Subileau E, Steen D, Zhong X (2010) A comparison of whole genome gene expression profiles of HepaRG cells and HepG2 cells to primary human hepatocytes and human liver tissues. Drug Metab Dispos Biol Fate Chem 38:988-994. https://doi.org/10.1124/dmd.109.031831 
  33. Kanebratt KP, Andersson TB (2008) Evaluation of HepaRG cells as an in vitro model for human drug metabolism studies. Drug Metab Dispos Biol Fate Chem 36:1444-1452. https://doi.org/10.1124/dmd.107.020016 
  34. Lubberstedt M, Muller-Vieira U, Mayer M, Biemel KM, Knospel F, Knobeloch D, Nussler AK, Gerlach JC, Zeilinger K (2011) HepaRG human hepatic cell line utility as a surrogate for primary human hepatocytes in drug metabolism assessment in vitro. J Pharmacol Toxicol Methods 63:59-68. https://doi.org/10.1016/j.vascn.2010.04.013 
  35. Freshney RI (2021) Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications, 6th edn. John Wiley & Sons, Inc., New York. https://doi.org/10.1002/9780470649367 
  36. Villarini M, Pagiotti R, Dominici L, Fatigoni C, Vannini S, Levorato S, Moretti M (2014) Investigation of the cytotoxic, genotoxic, and apoptosis-inducing effects of estragole isolated from fennel (Foeniculum Vulgare). J Nat Prod 77:773-778. https://doi.org/10.1021/np400653p 
  37. Shah D, Naciri M, Clee P, Al-Rubeai M (2006) NucleoCounter-an effcient technique for the determination of cell number and viability in animal cell culture processes. Cytotechnology 51:39-44. https://doi.org/10.1007/s10616-006-9012-9 
  38. Di Nunzio M, Valli V, Tomas-Cobos L, Tomas-Chisbert T, Murgui-Bosch L, Danesi F, Bordoni A (2017) Is cytotoxicity a determinant of the different in vitro and in vivo effects of bioactives? BMC Complement Altern Med. https://doi.org/10.1186/s12906-017-1962-2 
  39. Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu JC, Sasaki YF (2000) Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35:206-221. https://doi.org/10.1002/(sici)1098-2280(2000)35:3%3c206::aid-em8%3e3.0.co;2-j 
  40. Collins AR (2004) The comet assay for DNA damage and repair: principles, applications, and limitations. Mol Biotechnol 26:249-261. https://doi.org/10.1385/MB:26:3:249 
  41. Koppen G, Azqueta A, Pourrut B, Brunborg G, Collins AR, Langie SAS (2017) The next three decades of the comet assay: a report of the 11th international comet assay workshop. Mutagenesis 32:397-408. https://doi.org/10.1093/mutage/gex002 
  42. Respondek M, Beberok A, Rok J, Rzepka Z, Wrzesniok D, Buszman E (2018) MIM1, the Mcl-1-specific BH3 mimetic induces apoptosis in human U87MG glioblastoma cells. Toxicol In Vitro 53:126-135. https://doi.org/10.1016/j.tiv.2018.08.007 
  43. Beberok A, Wrzesniok D, Minecka A, Rok J, Delijewski M, Rzepka Z, Respondek M, Buszman E (2018) Ciprofloxacin-mediated induction of S-phase cell cycle arrest and apoptosis in COLO829 melanoma cells. Pharmacol Rep PR 70:6-13. https://doi.org/10.1016/j.pharep.2017.07.007 
  44. Salvioli S, Ardizzoni A, Franceschi C, Cossarizza A (1997) JC-1, but not DiOC6(3) or rhodamine 123, is a reliable fluorescent probe to assess ΔΨ changes in intact cells: implications for studies on mitochondrial functionality during apoptosis. FEBS Lett 411:77-82. https://doi.org/10.1016/S0014-5793(97)00669-8 
  45. Lombardi G, Vannini S, Blasi F, Marcotullio MC, Dominici L, Villarini M, Cossignani L, Moretti M (2015) In vitro safety/protection assessment of resveratrol and pterostilbene in a human hepatoma cell line (HepG2). Nat Prod Commun 10:1403-1408. https://doi.org/10.1177/1934578X1501000823 
  46. Kajstura M, Halicka HD, Pryjma J, Darzynkiewicz Z (2007) Discontinuous fragmentation of nuclear DNA during apoptosis revealed by discrete "Sub-G1" peaks on DNA content histograms. Cytom Part J Int Soc Anal Cytol 71:125-131. https://doi.org/10.1002/cyto.a.20357 
  47. Al-Attrache H, Sharanek A, Burban A, Burbank M, Gicquel T, Abdel-Razzak Z, Guguen-Guillouzo C, Morel I, Guillouzo A (2016) Differential sensitivity of metabolically competent and non-competent HepaRG cells to apoptosis induced by diclofenac combined or not with TNF-α. Toxicol Lett 258:71-86. https://doi.org/10.1016/j.toxlet.2016.06.008 
  48. Seo J-E, Tryndyak V, Wu Q, Dreval K, Pogribny I, Bryant M, Zhou T, Robison TW, Mei N, Guo X (2019) Quantitative comparison of in vitro genotoxicity between metabolically competent HepaRG cells and HepG2 cells using the high-throughput high-content CometChip assay. Arch Toxicol 93:1433-1448. https://doi.org/10.1007/s00204-019-02406-9 
  49. Waldherr M, Misik M, Ferk F, Tomc J, Zegura B, Filipic M, Mikulits W, Mai S, Haas O, Huber WW, Haslinger E, Knasmuller S (2018) Use of HuH6 and other human-derived hepatoma lines for the detection of genotoxins: a new hope for laboratory animals? Arch Toxicol 92:921-934. https://doi.org/10.1007/s00204-017-2109-4 
  50. Galant LS, Braga MM, de Souza D, de Bem AF, Sancineto L, Santi C, da Rocha JBT (2017) Induction of reactive oxygen species by diphenyl diselenide is preceded by changes in cell morphology and permeability in saccharomyces cerevisiae. Free Radic Res 51:657-668. https://doi.org/10.1080/10715762.2017.1355054 
  51. Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309-1312. https://doi.org/10.1126/science.281.5381.1309 
  52. Loefer M, Kroemer G (2000) The mitochondrion in cell death control: certainties and incognita. Exp Cell Res 256:19-26. https://doi.org/10.1006/excr.2000.4833