Acknowledgement
The authors thank Dr. Miki Tanaka and Ms. Kaede Namba for technical assistance during the course of this study.
References
- Dockery DW, Pope CA 3rd, Xu X, Spengler JD, Ware JH, Fay ME, Ferris BG Jr, Speizer FE (1993) An association between air pollution and mortality in six U.S. cities. N Engl J Med 329:1753-1759. https://doi.org/10.1056/NEJM199312093292401
- Falcon-Rodriguez CI, Osornio-Vargas AR, Sada-Ovalle I, Segura-Medina P (2016) Aeroparticles, composition, and lung diseases. Front Immunol 7:3. https://doi.org/10.3389/fimmu.2016.00003
- Kirrane EF, Luben TJ, Benson A, Owens EO, Sacks JD, Dutton SJ, Madden M, Nichols JL (2019) A systematic review of cardiovascular responses associated with ambient black carbon and fine particulate matter. Environ Int 127:305-316. https://doi.org/10.1016/j.envint.2019.02.027
- Darquenne C (2014) Aerosol deposition in the human lung in reduced gravity. J Aerosol Med Pulm Drug Deliv 27:170-177. https://doi.org/10.1089/jamp.2013.1079
- Nemmar A, Holme JA, Rosas I, Schwarze PE, Alfaro-Moreno E (2013) Recent advances in particulate matter and nanoparticle toxicology: a review of the in vivo and in vitro studies. Biomed Res Int 2013:279371. https://doi.org/10.1155/2013/279371
- Park TH, Park S, Cho MK, Kim S (2022) Associations of particulate matter with atopic dermatitis and chronic inflammatory skin diseases in South Korea. Clin Exp Dermatol 47:325-334. https://doi.org/10.1111/ced.14910
- Piao MJ, Ahn MJ, Kang KA, Ryu YS, Hyun YJ, Shilnikova K, Zhen AX, Jeong JW, Choi YH, Kang HK, Koh YS, Hyun JW (2018) Particulate matter 2.5 damages skin cells by inducing oxidative stress, subcellular organelle dysfunction, and apoptosis. Arch Toxicol 92:2077-2091. https://doi.org/10.1007/s00204-018-2197-9
- Krutmann J, Liu W, Li L, Pan X, Crawford M, Sore G, Seite S (2014) Pollution and skin: from epidemiological and mechanistic studies to clinical implications. J Dermatol Sci 76:163-168. https://doi.org/10.1016/j.jdermsci.2014.08.008
- Qiao Y, Li Q, Du HY, Wang QW, Huang Y, Liu W (2017) Airborne polycyclic aromatic hydrocarbons trigger human skin cells aging through aryl hydrocarbon receptor. Biochem Biophys Res Commun 488:445-452. https://doi.org/10.1016/j.bbrc.2017.04.160
- Dong L, Hu R, Yang D, Zhao J, Kan H, Tan J, Guan M, Kang Z, Xu F (2020) Fine particulate matter (PM2.5) upregulates expression of inflammasome NLRP1 via ROS/NF-kappaB signaling in HaCaT Cells. Int J Med Sci 17:2200-2206. https://doi.org/10.7150/ijms.46962
- Li Q, Kang Z, Jiang S, Zhao J, Yan S, Xu F, Xu J (2017) Effects of ambient fine particles PM2.5 on human HaCaT Cells. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph14010072
- Nagakura C, Negishi Y, Tsukimoto M, Itou S, Kondo T, Takeda K, Kojima S (2014) Involvement of P2Y11 receptor in silica nanoparticles 30-induced IL-6 production by human keratinocytes. Toxicology 322:61-68. https://doi.org/10.1016/j.tox.2014.03.010
- Shahid M, Pourrut B, Dumat C, Nadeem M, Aslam M, Pinelli E (2014) Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants. Rev Environ Contam Toxicol 232:1-44. https://doi.org/10.1007/978-3-319-06746-9_1
- Liu L, Bridges RJ, Eyer CL (2001) Effect of cytochrome P450 1A induction on oxidative damage in rat brain. Mol Cell Biochem 223:89-94. https://doi.org/10.1023/a:1017904912654
- Kim DJ, Iwasaki A, Chien AL, Kang S (2022) UVB-mediated DNA damage induces matrix metalloproteinases to promote photoaging in an AhR- and SP1-dependent manner. JCI Insight. https://doi.org/10.1172/jci.insight.156344
- Choi MK, Kim J, Park HM, Lim CM, Pham TH, Shin HY, Kim SE, Oh DK, Yoon DY (2022) The DPA-derivative 11S, 17S-dihydroxy 7,9,13,15,19 (Z, E, Z, E, Z)-docosapentaenoic acid inhibits IL-6 production by inhibiting ROS production and ERK/NF-kappaB pathway in keratinocytes HaCaT stimulated with a fine dust PM10. Ecotoxicol Environ Saf 232:113252. https://doi.org/10.1016/j.ecoenv.2022.113252
- Ishihara Y, Takemoto T, Itoh K, Ishida A, Yamazaki T (2015) Dual role of superoxide dismutase 2 induced in activated microglia: oxidative stress tolerance and convergence of inflammatory responses. J Biol Chem 290:22805-22817. https://doi.org/10.1074/jbc.M115.659151
- Chowdhury PH, Okano H, Honda A, Kudou H, Kitamura G, Ito S, Ueda K, Takano H (2018) Aqueous and organic extract of PM2.5 collected in different seasons and cities of Japan differently affect respiratory and immune systems. Environ Pollut 235:223-234. https://doi.org/10.1016/j.envpol.2017.12.040
- Honda A, Okuda T, Nagao M, Miyasaka N, Tanaka M, Takano H (2021) PM2.5 collected using cyclonic separation causes stronger biological responses than that collected using a conventional filtration method. Environ Res 198:110490. https://doi.org/10.1016/j.envres.2020.110490
- Ishihara N, Okuda T, Hagino H, Oguro A, Tani Y, Okochi H, Tokoro C, Fujii-Kuriyama Y, Itoh K, Vogel CFA, Ishihara Y (2022) Involvement of polycyclic aromatic hydrocarbons and endotoxin in macrophage expression of interleukin-33 induced by exposure to particulate matter. J Toxicol Sci 47:201-210. https://doi.org/10.2131/jts.47.201
- Ishihara Y, Itoh K, Ishida A, Yamazaki T (2015) Selective estrogen-receptor modulators suppress microglial activation and neuronal cell death via an estrogen receptor-dependent pathway. J Steroid Biochem Mol Biol 145:85-93. https://doi.org/10.1016/j.jsbmb.2014.10.002
- Ishihara Y, Kawami T, Ishida A, Yamazaki T (2012) Tributyltin induces oxidative stress and neuronal injury by inhibiting glutathione S-transferase in rat organotypic hippocampal slice cultures. Neurochem Int 60:782-790. https://doi.org/10.1016/j.neuint.2012.03.004
- Cho AK, Sioutas C, Miguel AH, Kumagai Y, Schmitz DA, Singh M, Eiguren-Fernandez A, Froines JR (2005) Redox activity of airborne particulate matter at different sites in the Los Angeles Basin. Environ Res 99:40-47. https://doi.org/10.1016/j.envres.2005.01.003
- Kumagai Y, Koide S, Taguchi K, Endo A, Nakai Y, Yoshikawa T, Shimojo N (2002) Oxidation of proximal protein sulfhydryls by phenanthraquinone, a component of diesel exhaust particles. Chem Res Toxicol 15:483-489. https://doi.org/10.1021/tx0100993
- Inami Y, Andoh T, Sasaki A, Kuraishi Y (2013) Topical surfactant-induced pruritus: involvement of histamine released from epidermal keratinocytes. J Pharmacol Exp Ther 344:459-466. https://doi.org/10.1124/jpet.112.200063
- Kojima H, Katoh M, Shinoda S, Hagiwara S, Suzuki T, Izumi R, Yamaguchi Y, Nakamura M, Kasahawa T, Shibai A (2014) A catch-up validation study of an in vitro skin irritation test method using reconstructed human epidermis LabCyte EPI-MODEL24. J Appl Toxicol 34:766-774. https://doi.org/10.1002/jat.2937
- Saito K, Takenouchi O, Nukada Y, Miyazawa M, Sakaguchi H (2017) An in vitro skin sensitization assay termed EpiSensA for broad sets of chemicals including lipophilic chemicals and pre/pro-haptens. Toxicol In Vitro 40:11-25. https://doi.org/10.1016/j.tiv.2016.12.005
- Feng S, Gao D, Liao F, Zhou F, Wang X (2016) The health effects of ambient PM2.5 and potential mechanisms. Ecotoxicol Environ Saf 128:67-74. https://doi.org/10.1016/j.ecoenv.2016.01.030
- Phillipson M, Kubes P (2019) The healing power of neutrophils. Trends Immunol 40:635-647. https://doi.org/10.1016/j.it.2019.05.001
- Su Y, Richmond A (2015) Chemokine regulation of neutrophil infiltration of skin wounds. Adv Wound Care (New Rochelle) 4:631-640. https://doi.org/10.1089/wound.2014.0559
- Xing YF, Xu YH, Shi MH, Lian YX (2016) The impact of PM2.5 on the human respiratory system. J Thorac Dis 8:E69-E74. https://doi.org/10.3978/j.issn.2072-1439.2016.01.19
- Ejaz S, Ashraf M, Nawaz M, Lim CW (2009) Total particulate matter and wound healing: an in vivo study with histological insights. Biomed Environ Sci 22:278-287. https://doi.org/10.1016/S0895-3988(09)60057-X
- Vierkotter A, Schikowski T, Ranft U, Sugiri D, Matsui M, Kramer U, Krutmann J (2010) Airborne particle exposure and extrinsic skin aging. J Invest Dermatol 130:2719-2726. https://doi.org/10.1038/jid.2010.204
- Devalaraja RM, Nanney LB, Du J, Qian Q, Yu Y, Devalaraja MN, Richmond A (2000) Delayed wound healing in CXCR2 knockout mice. J Invest Dermatol 115:234-244. https://doi.org/10.1046/j.1523-1747.2000.00034.x
- Addison CL, Daniel TO, Burdick MD, Liu H, Ehlert JE, Xue YY, Buechi L, Walz A, Richmond A, Strieter RM (2000) The CXC chemokine receptor 2, CXCR2, is the putative receptor for ELR+ CXC chemokine-induced angiogenic activity. J Immunol 165:5269-5277. https://doi.org/10.4049/jimmunol.165.9.5269
- Heidemann J, Ogawa H, Dwinell MB, Rafiee P, Maaser C, Gockel HR, Otterson MF, Ota DM, Lugering N, Domschke W, Binion DG (2003) Angiogenic effects of interleukin 8 (CXCL8) in human intestinal microvascular endothelial cells are mediated by CXCR2. J Biol Chem 278:8508-8515. https://doi.org/10.1074/jbc.M208231200
- Carreira EU, Carregaro V, Teixeira MM, Moriconi A, Aramini A, Verri WA Jr, Ferreira SH, Cunha FQ, Cunha TM (2013) Neutrophils recruited by CXCR1/2 signalling mediate post-incisional pain. Eur J Pain 17:654-663. https://doi.org/10.1002/j.1532-2149.2012.00240.x
- Levine JD, Khasar SG, Green PG (2006) Neurogenic inflammation and arthritis. Ann N Y Acad Sci 1069:155-167. https://doi.org/10.1196/annals.1351.014
- Sumida H, Yanagida K, Kita Y, Abe J, Matsushima K, Nakamura M, Ishii S, Sato S, Shimizu T (2014) Interplay between CXCR2 and BLT1 facilitates neutrophil infiltration and resultant keratinocyte activation in a murine model of imiquimod-induced psoriasis. J Immunol 192:4361-4369. https://doi.org/10.4049/jimmunol.1302959
- Walsh CM, Hill RZ, Schwendinger-Schreck J, Deguine J, Brock EC, Kucirek N, Rifi Z, Wei J, Gronert K, Brem RB, Barton GM, Bautista DM (2019) Neutrophils promote CXCR3-dependent itch in the development of atopic dermatitis. Elife. https://doi.org/10.7554/eLife.48448
- Jin SP, Li Z, Choi EK, Lee S, Kim YK, Seo EY, Chung JH, Cho S (2018) Urban particulate matter in air pollution penetrates into the barrier-disrupted skin and produces ROS-dependent cutaneous inflammatory response in vivo. J Dermatol Sci. https://doi.org/10.1016/j.jdermsci.2018.04.015
- Sawada N, Nakaya T, Kashima S, Yorifuji T, Hanibuchi T, Charvat H, Yamaji T, Iwasaki M, Inoue M, Iso H, Tsugane S (2022) Long-term exposure to fine particle matter and all-cause mortality and cause-specific mortality in Japan: the JPHC Study. BMC Public Health 22:466. https://doi.org/10.1186/s12889-022-12829-2
- D'Orazio J, Jarrett S, Amaro-Ortiz A, Scott T (2013) UV radiation and the skin. Int J Mol Sci 14:12222-12248. https://doi.org/10.3390/ijms140612222
- Mokrzynski K, Krzysztynska-Kuleta O, Zawrotniak M, Sarna M, Sarna T (2021) Fine particulate matter-induced oxidative stress mediated by UVA-visible light leads to keratinocyte damage. Int J Mol Sci. https://doi.org/10.3390/ijms221910645
- von Koschembahr A, Youssef A, Beal D, Gudimard L, Giot JP, Douki T (2020) Toxicity and DNA repair in normal human keratinocytes co-exposed to benzo[a]pyrene and sunlight. Toxicol In Vitro 63:104744. https://doi.org/10.1016/j.tiv.2019.104744
- Ishihara Y, Shiba D, Shimamoto N (2006) Enhancement of DMNQ-induced hepatocyte toxicity by cytochrome P450 inhibition. Toxicol Appl Pharmacol 214:109-117. https://doi.org/10.1016/j.taap.2005.12.003
- Hagio-Izaki K, Yasunaga M, Yamaguchi M, Kajiya H, Morita H, Yoneda M, Hirofuji T, Ohno J (2018) Lipopolysaccharide induces bacterial autophagy in epithelial keratinocytes of the gingival sulcus. BMC Cell Biol 19:18. https://doi.org/10.1186/s12860-018-0168-x
- Menden HL, Xia S, Mabry SM, Navarro A, Nyp MF, Sampath V (2016) Nicotinamide adenine dinucleotide phosphate oxidase 2 regulates LPS-induced inflammation and alveolar remodeling in the developing lung. Am J Respir Cell Mol Biol 55:767-778. https://doi.org/10.1165/rcmb.2016-0006OC
- Bae HC, Jeong SH, Kim JH, Lee H, Ryu WI, Kim MG, Son ED, Lee TR, Son SW (2018) RIP4 upregulates CCL20 expression through STAT3 signalling in cultured keratinocytes. Exp Dermatol 27:1126-1133. https://doi.org/10.1111/exd.13750
- Li H, Li H, Huo R, Wu P, Shen Z, Xu H, Shen B, Li N (2017) Cyr61/CCN1 induces CCL20 production by keratinocyte via activating p38 and JNK/AP-1 pathway in psoriasis. J Dermatol Sci 88:46-56. https://doi.org/10.1016/j.jdermsci.2017.05.018
- Park JH, Lee KY, Park B, Yoon J (2015) Suppression of Th2 chemokines by crocin via blocking of ERK-MAPK/NF-kappaB/STAT1 signalling pathways in TNF-alpha/IFN-gamma-stimulated human epidermal keratinocytes. Exp Dermatol 24:634-636. https://doi.org/10.1111/exd.12726
- Rinna A, Forman HJ (2008) SHP-1 inhibition by 4-hydroxynonenal activates Jun N-terminal kinase and glutamate cysteine ligase. Am J Respir Cell Mol Biol 39:97-104. https://doi.org/10.1165/rcmb.2007-0371OC
- Alicea-Velazquez NL, Jakoncic J, Boggon TJ (2013) Structure-guided studies of the SHP-1/JAK1 interaction provide new insights into phosphatase catalytic domain substrate recognition. J Struct Biol 181:243-251. https://doi.org/10.1016/j.jsb.2012.12.009
- Carballo M, Conde M, El Bekay R, Martin-Nieto J, Camacho MJ, Monteseirin J, Conde J, Bedoya FJ, Sobrino F (1999) Oxidative stress triggers STAT3 tyrosine phosphorylation and nuclear translocation in human lymphocytes. J Biol Chem 274:17580-17586. https://doi.org/10.1074/jbc.274.25.17580
- Qu Y, Oyan AM, Liu R, Hua Y, Zhang J, Hovland R, Popa M, Liu X, Brokstad KA, Simon R, Molven A, Lin B, Zhang WD, McCormack E, Kalland KH, Ke XS (2013) Generation of prostate tumor-initiating cells is associated with elevation of reactive oxygen species and IL-6/STAT3 signaling. Cancer Res 73:7090-7100. https://doi.org/10.1158/0008-5472.CAN-13-1560