• Title/Summary/Keyword: 3D epidermis culture

Search Result 5, Processing Time 0.019 seconds

Effect of Plant Growth Regulators on Calls Initiation and Organogenesis from Tissue Culture of Arabidopsis thaliana Stem (애기장대 줄기 조직배양에 있어서 식물생장조절제가 캘러스 형성과 기관분화에 미치는 영향)

  • Park, Jung-An;Park, Jong-Bum
    • Journal of Plant Biotechnology
    • /
    • v.30 no.3
    • /
    • pp.257-261
    • /
    • 2003
  • This experiment was carried out to investigate the effects of plant growth regulators on the organogenesis from the tissue culture of Arabidopsis thaliana stem, and the origin of the callus development. When the stem segments were cultured on medium with 2mg/L IAA or NAA, adventitious roots and trichomes were differentiated after 11 days of culture. Callus vigorously formed on medium with 2/L2,4 after 7 days of culture, but adventitious roots and trichomes were not differentiated from callus after 10 days of culture. This results suggesting that picloram is very effective auxin for the callus formation and organogenesis. Callus weakly formed on 0.05mg/L kinetin, and formed on combination of auxins(2mg/L) with 0.05mg/L kinetin. But the effect of combination of auxins and kinetin the callus formation was less than 2,4-D or picloram alone. A histological examination of callus formed on picloram showed that phloram showed that phloem parenchyma cells were divided and enlarged after 2 days of culture. Cortex parenchyma cells were divided and meristematic nodules were developed from these cells after 4 days of culture. Finally, callus formed on outside of cortex and epidermis by division of meristematic nodules after 7 days of culture.

The Effect of Kaempferol, guercetin on Hyaluronan-Synthesis Stimulation in Human Keratinocytes (HaCaT) (인체 피부 세포주 (HaCaT)에서 Kaempferol, Quercetin의 Hyaluronan 합성 촉진 효과에 대한 연구)

  • Kim, Seung-Hun;Nam, Gae-Won;Kang, Byung-Young;Lee, Hae-Kwang;Moon, Seong-Joon;Chang, Ih-Seop
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.31 no.1 s.49
    • /
    • pp.97-102
    • /
    • 2005
  • One of the key molecules involved in skin moisture is hyaluronan (hyaluronic acid, HA) with its associated water of hydration. The predominant component of the ECM (extracellular matrix) of skin is HA. It Is the primordial and the simplest of the GAGs (glycosaminoglycans), a water-sorbed macromolecule In extracellular matrix, Included between the vital cells of epidermis. In the skin, HA was previously thought to derive extlusively from dermis. But, recent studies revealed that HA could be synthesized in epidermis. Flavonoids are polyphenolic compounds that is found mainly in foods of plant origin. Kaempferol was known to increase glutathione synthesis in human keratinocyte. And quercetin blocked PPAR-meidated keratinocyte differentiation as lipoxygenase inhibitors. In this study, we sought to evaluate the effect of flavonid, kaempferol and quercetin on production HA in keratinocyte. We examined the changes of three human hyaluronan synthase genes (HASI, HAS2, HAS3) expression by semi-quantitative RT-PCR when kaempferol or quercetin was added to cultured human keratinocytes. We found that these flavonoids slightly upregulated HAS2, HAS3 mRNA after 24 h. And we investigated the effect on HA production by ELISA. When we evaluated the level of HA in culture medium after 24 h incubation. We found enhanced accumulation of HA in the culture medium. Although the effects of above flavonoids are less than retinoic acid, the data indicate that kaempferol, quercetin can dose-dependently increase the level of HA in epidermis cell line. It suggested that flavonoid, kaempferol, and quercetin increased production of HA in skin and it helped to elevate skin moisture and improve facial wrinkle.

Three-Dimensional Skin Tissue Printing with Human Skin Cell Lines and Mouse Skin-Derived Epidermal and Dermal Cells

  • Jin, Soojung;Oh, You Na;Son, Yu Ri;Kwon, Boguen;Park, Jung-ha;Gang, Min jeong;Kim, Byung Woo;Kwon, Hyun Ju
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.2
    • /
    • pp.238-247
    • /
    • 2022
  • Since the skin covers most surfaces of the body, it is susceptible to damage, which can be fatal depending on the degree of injury to the skin because it defends against external attack and protects internal structures. Various types of artificial skin are being studied for transplantation to repair damaged skin, and recently, the production of replaceable skin using three-dimensional (3D) bioprinting technology has also been investigated. In this study, skin tissue was produced using a 3D bioprinter with human skin cell lines and cells extracted from mouse skin, and the printing conditions were optimized. Gelatin was used as a bioink, and fibrinogen and alginate were used for tissue hardening after printing. Printed skin tissue maintained a survival rate of 90% or more when cultured for 14 days. Culture conditions were established using 8 mM calcium chloride treatment and the skin tissue was exposed to air to optimize epidermal cell differentiation. The skin tissue was cultured for 14 days after differentiation induction by this optimized culture method, and immunofluorescent staining was performed using epidermal cell differentiation markers to investigate whether the epidermal cells had differentiated. After differentiation, loricrin, which is normally found in terminally differentiated epidermal cells, was observed in the cells at the tip of the epidermal layer, and cytokeratin 14 was expressed in the lower cells of the epidermis layer. Collectively, this study may provide optimized conditions for bioprinting and keratinization for three-dimensional skin production.

2D AND 3D STRUCTURAL STUDY OF RETE RIDGE IN ORAL MUCOSA AND SKIN PADDLE OF VARIOUS FREE FLAPS (구강내 점막과 유리피판에 사용되는 피부의 rete ridge에 관한 2차원 및 3차원적 구조 연구)

  • Ahn, Kang-Min;Chung, Hun-Jong;Kim, Yoon-Tae;Paeng, Jun-Young;Shin, Young-Min;Sung, Mi-Ae;Park, Hee-Jung;Myoung, Hoon;Hwang, Soon-Jung;Choi, Jin-Young;Choung, Pill-Hoon;Kim, Myung-Jin;Lee, Jong-Ho
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.31 no.2
    • /
    • pp.143-149
    • /
    • 2005
  • Objects : With the advancement of tissue engineering techniques, the effort to develop bioartificial mucosa have been actively delivered. The problem we met with this technique is the lack of mechanical strength between kerationocyte layer and dermal layer, where in the normal skin and mucosa, they are tightly bound with rete ridge structure. The purpose of this study is to understand the 2D and 3D structure of rete ridge of mucosa and skin paddle for rendering more biomimetic structure to the artificial mucosa. Materials and Methods : Oral mucosa and skin from the patients who received the oral surgery and maxillofacial reconstruction were harvested. The epidermis was separated from the dermis after treating with dispase for 12-16 hours. H&E staining was performed for 2D(dimensional) structure study and confocal LASER and SEM study were performed for 3D structure. Mean height(Sc) and arithmetic mean deviation(Sa) of all surface height were calculated. Results : The average height of rete ridge of skin flap was between $67.14{\mu}m$ and $194.55{\mu}m$. That of oral mucosa was between $146.26{\mu}m$ and $167.51{\mu}m$. Pressure bearing area and attached gingiva of oral mucosa showed deeper rete ridges. Conclusion : To obtain the adequate strength of artificially cultured keratinocyte skin and mucosa flap, it is necessary to imitate the original skin and mucosa structure, especially rete ridge. Through this study, 2D and 3D rete ridge structure of normal mucosa and skin was obtained. These results can be used as basis for substrate morphology for keratinocytes culture.

Characterization of in vitro Growth and Differentiation of an Albino Mutant of Nicotiana tobacum L. (Albino 담배 변이체의 기내 생장과 기내 분화의 특성)

  • ;;;;;;Yoshida Shigeo
    • Korean Journal of Plant Tissue Culture
    • /
    • v.26 no.3
    • /
    • pp.197-203
    • /
    • 1999
  • The albino plants of tobacco (Nicotiana tobacum L. cv. BY-4) were isolated from seed populations that were induced by heavy-ion ($^{14}N$) beam irradiation to proembryo and the in vitro growth and differentiation have been characterized. The in vitro cultured albino plants showed significant reduction of chlorophyll content and possessed larger number of stomata on both upper and lower epidermis than that of wild-type plants. Stem growth of the mutants remained dwarfed, however, the internode recovered its normal length after GA$_3$ treatment (10.0mg/L) on the MS medium containing sucrose under continuous light. When explants of leaf blades of albino plants were cultured, multiple shoots formed directly on MS medium containing 1.0mg/L of BAP or kinetin and a large number of calli were induced on the MS medium containing 1.0mg/L NAA or 1.0 mg/L 2,4-D. The albino calli regenerated multiple albino plantlets in the MS medium containing 0.1mg/L NAA + 1.0 mg/L BAP. No significant differences between the wild-type and albino plants were detected in the multiple shoot induction, callus formation from the explants and the plantlets regeneration from calli. In addition, albino plants have a similar organogenesis Pattern to that of the wild-type in the media with different combinations of NAA (0 to 5.0mg/L) and BAP (0 to 5.0mg/L) treatment. These results indicate that the albino mutant has the same normal regeneration ability as that of wild-type, although the mutant has lost functions in photosynthesis, such as pigmentation.

  • PDF