DOI QR코드

DOI QR Code

Effective Control Strategy against Bacterial Blight on Carrot

당근 세균잎마름병에 대한 효과적 방제 수단

  • Hyun Su Kang (College of Applied Life Sciences, Sustainable Agriculture Research Institute, Jeju National University) ;
  • Mi-Jin Kim (College of Applied Life Sciences, Sustainable Agriculture Research Institute, Jeju National University) ;
  • Yong Ho Shin (College of Applied Life Sciences, Sustainable Agriculture Research Institute, Jeju National University) ;
  • Yong Chull Jeun (College of Applied Life Sciences, Sustainable Agriculture Research Institute, Jeju National University)
  • 강현수 (제주대학교 생명자원과학대학 친환경연구소) ;
  • 김미진 (제주대학교 생명자원과학대학 친환경연구소) ;
  • 신용호 (제주대학교 생명자원과학대학 친환경연구소) ;
  • 전용철 (제주대학교 생명자원과학대학 친환경연구소)
  • Received : 2023.09.13
  • Accepted : 2023.10.11
  • Published : 2023.12.31

Abstract

Bacterial blight of carrot caused by Xanthomonas hortorum pv. carotae (Xhc) is one of the serious diseases of carrot, of which control measures has not been still established in the domestic farm. In this study, in order to select effective sterilizer for bacterial blight of carrots, three antibiotics such as streptomycin, oxolinic acid, kasugamycin, two copper compounds like copper hydroxide and copper sulfate basic and three rhizobacteria Burkholderia gladioli MRL408-3, Pseudomonas fluorescens TRH415-2 and Bacillus cereus KRY505-3 were selected to investigate their direct antibacterial effects using artificial media, aiming to identify effective pesticides against Xhc. Among them, treated medium with antibiotics such as streptomycin, oxolinic acid, and the antagonistic rhizobacteria MRL408-3 were formed inhibition zone. The agrochemicals and the rhizobacteria MRL408-3, which showed antibacterial effects on carrot leaves, pre-treated on the carrot leaves and then inoculated with Xhc. High control effects were shown on the carrot leaves pre-treated with both streptomycin and oxolinic acid. Scanning electron microscopy images of the carrot leaf surfaces showed that the population of bacteria decreased significantly on leaves pre-treated with streptomycin and oxolinic acid. From these results, it can be inferred that antibiotics like streptomycin and oxolinic acid exhibit superior control effects compared to other agents. This study provides valuable insights towards establishing an effective control system for bacterial blight of carrot.

당근 세균잎마름병을 일으키는 Xanthomonas hortorum pv. carotae는 당근 생산량에 큰 피해를 주는 병 중 하나로 국내에서 아직 방제에 대한 연구가 미흡한 실정이다. 본 연구에서는 당근 세균잎마름병균에 효과적인 농약을 선발하기 위하여 3종의 항생제 streptomycin, oxolinic acid, kasugamycin, 2종의 구리제 copper hydroxide, copper sulfate basic 그리고 길항근권세균 Burkholderia gladioli MRL408-3, Pseudomonas fluorescens TRH415-2, Bacillus cereus KRY505-3을 선정하여 인공배지를 이용하여 이들의 직접적인 항균효과를 조사하였다. 이 중 항생제 streptomycin, oxolinic acid와 길항미생물 MRL408-3을 처리한 배지에서 억제환이 형성되었다. 당근 잎에 농약과 항균효과를 보였던 길항미생물 MRL408-3을 전처리한 후 당근 세균잎마름병균을 접종하였더니 streptomycin과 oxolinic acid을 전처리한 당근 잎에 높은 방제효과를 보였다. 이들 당근 잎 표면의 장방출주사현미경 이미지에서 streptomycin과 oxolinic acid를 전처리한 잎에서는 세균 수가 무처리한 잎과 비교하여 급격히 감소하였다. 이들 결과를 통해 streptomycin과 oxolinic acid와 같은 항생제가 다른 약제에 비해 방제 효과가 뛰어나다는 것을 알 수 있었다. 본 연구는 당근 세균잎마름병에 대한 이상적인 방제 시스템을 구축하는 데 도움이 되는 자료로서 가치가 있을 것으로 생각된다.

Keywords

Acknowledgement

This work was carried out with the support of "Cooperative Research Program for Agriculture Science & Technology Development (PJ0162412021)" Rural Development Administration, Republic of Korea.

References

  1. Bastas, K. K., Butt, H. and Gur, A. 2021. Seedborne bacteria of orange and black colour carrots in Turkey. Int. J. Phytopathol. 10: 203-214. https://doi.org/10.33687/phytopath.010.03.3951
  2. Choi, D. H., Choi, H. J., Kim, Y. J., Lim, Y.-J., Lee, I. and Park, D. H. 2022. Screening of bacterial antagonists to develop an effective cocktail against Erwinia amylovora. Res. Plant Dis. 28: 152-161. https://doi.org/10.5423/RPD.2022.28.3.152
  3. Christianson, C. E., Jones, S. S. and Du Toit, L. J. 2015. Screening carrot germplasm for resistance to Xanthomonas hortorum pv. carotae. HortScience 50: 341-350. https://doi.org/10.21273/HORTSCI.50.3.341
  4. Copping, L. G. and Duke, S. O. 2007. Natural products that have been used commercially as crop protection agents. Pest Manag. Sci. 63: 524-554. https://doi.org/10.1002/ps.1378
  5. Cui, G., Yin, K., Lin, N., Liang, M., Huang, C., Chang, C. et al. 2020. Burkholderia gladioli CGB10: a novel strain biocontrolling the sugarcane smut disease. Microorganisms 8: 1943.
  6. Davis, R. M. 2004. Carrot diseases and their management. In: Diseases of Fruits and Vegetables, Vol. I. Diagnosis and Management, ed. by S. A. M. H. Naqvi, pp. 397-439. Springer, Dordrecht, Netherlands.
  7. Dia, N. C., Moriniere, L., Cottyn, B., Bernal, E., Jacobs, J. M., Koebnik, R. et al. 2022. Xanthomonas hortorum-beyond gardens: current taxonomy, genomics, and virulence repertoires. Mol. Plant Pathol. 23: 597-621. https://doi.org/10.1111/mpp.13185
  8. Du Toit, L. J., Crowe, F. J., Derie, M. L., Simmons, R. B. and Pelter, G. Q. 2005. Bacterial blight in carrot seed crops in the Pacific Northwest. Plant Dis. 89: 896-907. https://doi.org/10.1094/PD-89-0896
  9. Du Toit, L. J., Derie, M. L., Christianson, C. E., Hoagland, L. and Simon, P. 2014. First report of bacterial blight of carrot in Indiana caused by Xanthomonas hortorum pv. carotae. Plant Dis. 98: 685.
  10. Dupas, E., Durand, K. and Jacques, M.-A. 2023. Analysis of the worldwide diversity of Xanthomonas hortorum pv. carotae, the agent of bacterial blight of carrot, reveals two distinct populations. Preprint at bioRxiv: https://doi.org/10.1101/2023.04.21.537781.
  11. Gugino, B. K., Carroll, J., Chen, J., Ludwig, J. and Abawi, G. 2004. Carrot Leaf Blight Diseases and Their Management in New York. Vegetables IPM Fact Sheet. New York State Integrated Pest Management Program. Cornell University, Ithaca, NY, USA. 4 pp.
  12. Ham, H., Oh, G.-R., Park, D. S. and Lee, Y. H. 2022. Survey of oxolinic acid-resistant Erwinia amylovora in Korean apple and pear orchards, and the fitness impact of constructed mutants. Plant Pathol. J. 38: 482-489. https://doi.org/10.5423/PPJ.OA.04.2022.0059
  13. Hikichi, Y., Tsujiguchi, K., Maeda, Y. and Okuno, T. 2001. Development of increased oxolinic acid resistance in Burkholderia glumae. J. Gen. Plant Pathol. 67: 58-62. https://doi.org/10.1007/PL00012988
  14. Hyun, J.-W., Ko, S.-W., Kim, D.-H., Han, S.-G., Kim, K.-S., Kwon, H.-M. et al. 2005. Effective usage of copper fungicides for environmentf-riendly control of citrus diseases. Res. Plant Dis. 11: 115-121. (In Korean) https://doi.org/10.5423/RPD.2005.11.2.115
  15. Jeon, K. W., Kim, M. G., Park, J. H. and Kim, C. S. 2021. Changes of the qualities and active components of new carrot cultivar 'Tamnahong' according to different harvest time. J. Korean Soc. Food Sci. Nutr. 50: 1101-1107. https://doi.org/10.3746/jkfn.2021.50.10.1101
  16. Kang, S. Y. and Jeun, Y. C. 2010. Suppressive effect of bacterial isolates from plant rhizosphere against late blight caused by Phytophthora citrophthora on citrus fruits. Res. Plant Dis. 16: 35-40. (In Korean) https://doi.org/10.5423/RPD.2010.16.1.035
  17. Kendrick, J. B. 1934. Bacterial blight of carrot. J. Agric. Res. 49: 493-510.
  18. Kim, D.-R., Gang, G.-H., Cho, H. J., Myung, I.-S., Yoon, H.-S. and Kwak, Y.-S. 2015. Development of control method for strawberry bacterial angular spot disease (Xanthomonas fragariae). Korean J. Pestic. Sci. 19: 287-294. https://doi.org/10.7585/kjps.2015.19.3.287
  19. Kim, H. S., Sang, M. K., Jeun, Y.-C., Hwang, B. K. and Kim, K. D. 2008. Sequential selection and efficacy of antagonistic rhizobacteria for controlling Phytophthora blight of pepper. Crop Prot. 27: 436-443. https://doi.org/10.1016/j.cropro.2007.07.013
  20. Kim, J. and Sang, M. K. 2023. Biocontrol activities of Peribacillus butanolivorans KJ40, Bacillus zanthoxyli HS1, B. siamensis H30-3 and Pseudomonas sp. BC42 on anthracnose, bacterial fruit blotch and Fusarium wilt of cucumber plants. Res. Plant Dis. 29: 188-192. https://doi.org/10.5423/RPD.2023.29.2.188
  21. Kim, Y. S., Ngo, M. T., Kim, B., Han, J. W., Song, J., Park, M. S. et al. 2022. Biological control potential of Penicillium brasilianum against fire blight disease. Plant Pathol. J. 38: 461-471. https://doi.org/10.5423/PPJ.OA.06.2022.0076
  22. Kimbrel, J. A., Givan, S. A., Temple, T. N., Johnson, K. B. and Chang, J. H. 2011. Genome sequencing and comparative analysis of the carrot bacterial blight pathogen, Xanthomonas hortorum pv. carotae M081, for insights into pathogenicity and applications in molecular diagnostics. Mol. Plant Pathol. 12: 580-594. https://doi.org/10.1111/j.1364-3703.2010.00694.x
  23. Kuan, T.-L., Minsavage, G. V. and Gabrielson, R. L. 1985. Detection of Xanthomonas campestris pv. carotae in carrot seed. Plant Dis. 69: 758-760. https://doi.org/10.1094/PD-69-758
  24. McGhee, G. C. and Sundin, G. W. 2011. Evaluation of kasugamycin for fire blight management, effect on nontarget bacteria, and assessment of kasugamycin resistance potential in Erwinia amylovora. Phytopathology 101: 192-204. https://doi.org/10.1094/PHYTO-04-10-0128
  25. McManus, P. S., Stockwell, V. O., Sundin, G. W. and Jones, A. L. 2002. Antibiotic use in plant agriculture. Annu. Rev. Phytopathol. 40: 443-465. https://doi.org/10.1146/annurev.phyto.40.120301.093927
  26. Myung. I.-S., Yoon. M.-J., Lee. J.-Y., Kim. G.-D., Lee. M.-H., Hwang. E.-Y. et al. 2014. First report of bacterial leaf blight of carrot caused by Xanthomonas hortorum pv. carotae in Korea. Plant Dis. 98: 275. https://doi.org/10.1094/PDIS-07-13-0724-PDN
  27. Nega, E., Ulrich, R., Werner, S. and Jahn, M. 2003. Hot water treatment of vegetable seed: an alternative seed treatment method to control seed-borne pathogens in organic farming. J. Plant Dis. Prot. 110: 220-234.
  28. Nishiyama, K., Fukunishi, T., Terada, T. and Ezuka, A. 1979. Bacterial blight of carrot caused by Xanthomonas carotae, a bacterial disease new to Japan. Ann. Phytopathol. Soc. Jpn. 45: 683-688. https://doi.org/10.3186/jjphytopath.45.683
  29. Norelli, J. L., Jones, A. L. and Aldwinckle, H. S. 2003. Fire blight management in the twenty-first century: using new technologies that enhance host resistance in apple. Plant Dis. 87: 756-765. https://doi.org/10.1094/PDIS.2003.87.7.756
  30. Palomo Gomez, J. L., Shima, M., Monterde, A., Navarro, I., Barbe, S. and Marco-Noales, E. 2021. First report of bacterial leaf blight caused by Xanthomonas hortorum pv. carotae on carrots in Spain. Plant Dis. 105: 2712.
  31. Pfleger, F. L., Harman, G. E. and Marx, G. A. 1974. Bacterial blight of carrots: interaction of temperature, light, and inoculation procedures on disease development of various carrot cultivars. Phytopathology 64: 746-749. https://doi.org/10.1094/Phyto-64-746
  32. Polito, V. S., Pinney, K., Buchner, R. and Olson, W. 2002. Streptomycin applications to control walnut blight disease can prevent fertilization and increase fruit drop. HortScience 37: 940-942. https://doi.org/10.21273/HORTSCI.37.6.940
  33. Roberts, D. P., Lohrke, S. M., Meyer, S. L. F., Buyer, J. S., Bowers, J. H., Baker, C. J. et al. 2005. Biocontrol agents applied individually and in combination for suppression of soilborne diseases of cucumber. Crop Prot. 24: 141-155. https://doi.org/10.1016/j.cropro.2004.07.004
  34. Scott, J. C. and Dung, J. K. S. 2020. Distribution of Xanthomonas hortorum pv. carotae populations in naturally infested carrot seed lots. Plant Dis. 104: 2144-2148. https://doi.org/10.1094/PDIS-12-19-2674-RE
  35. Shantharaj, D., Williams, M. A., Potnis, N. S. and Liles, M. R. 2021. Burkholderia gladioli C101 metabolites protect tomato plants against Xanthomonas perforans infection. J. Plant Dis. Prot. 128: 379-390. https://doi.org/10.1007/s41348-020-00416-9
  36. Sharma, A., Abrahamian, P., Carvalho, R., Choudhary, M., Paret, M. L., Vallad, G. E. et al. 2022. Future of bacterial disease management in crop production. Annu. Rev. Phytopathol. 60: 259-282. https://doi.org/10.1146/annurev-phyto-021621-121806
  37. Shungu, D. L., Weinberg, E., and Gadebusch, H. H. 1983. In vitro antibacterial activity of norfloxacin (MK-0366, AM-715) and other agents against gastrointestinal tract pathogens. Antimicrob. Agents Chemother. 23: 86-90. https://doi.org/10.1128/AAC.23.1.86
  38. Strandberg, J. O. and White, J. M. 1989. Response of carrot seeds to heat treatments. J. Am. Soc. Hortic. Sci. 114: 766-769. https://doi.org/10.21273/JASHS.114.5.766
  39. Sundin, G. W. and Bender, C. L. 1993. Ecological and genetic analysis of copper and streptomycin resistance in Pseudomonas syringae pv. syringae. Appl. Environ Microbiol. 59: 1018-1024. https://doi.org/10.1128/aem.59.4.1018-1024.1993
  40. Tanaka, N., Yamaguchi, H. and Umezawa, H. 1966. Mechanism of kasugamycin action on polypeptide synthesis. J. Biochem. 60: 429-434. https://doi.org/10.1093/oxfordjournals.jbchem.a128454
  41. Umesh, K. C., Davis, R. M. and Gilbertson, R. L. 1998. Seed contamination thresholds for development of carrot bacterial blight caused by Xanthomonas campestris pv. carotae. Plant Dis. 82: 1271-1275. https://doi.org/10.1094/PDIS.1998.82.11.1271
  42. United States Department of Agriculture. 2021. Research, Education & Economics Information System. URL https://portal.nifa. usda.gov/web/crisprojectpages/1023567-a-systems-approach-for-managing-bacterial-blight-of-carrot.html [31 August 2021].
  43. Vianna, J. F., Bezerra, K. S., Oliveira, J. I. N., Albuquerque, E. L. and Fulco, U. L. 2019. Binding energies of the drugs capreomycin and streptomycin in complex with tuberculosis bacterial ribosome subunits. Phys. Chem. Chem. Phys. 21: 19192-19200. https://doi.org/10.1039/C9CP03631H
  44. Vu, N. T. and Oh, C.-S. 2020. Bacteriophage usage for bacterial disease management and diagnosis in plants. Plant Pathol. J. 36: 204-217. https://doi.org/10.5423/PPJ.RW.04.2020.0074
  45. Weller, D. M. 1988. Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu. Rev. Phytopathol. 26: 379-407. https://doi.org/10.1146/annurev.py.26.090188.002115
  46. Whiteside, J. O. 1977. Sites of action of fungicides in the control of citrus melanose. Phytopathology 67: 1067-1072. https://doi.org/10.1094/Phyto-67-1067
  47. Yang, J. S., Kang, S. Y. and Jeun, Y. C. 2014. Suppression of citrus canker by pretreatment with rhizobacterial strains showing antibacterial activity. Res. Plant Dis. 20: 101-106. https://doi.org/10.5423/RPD.2014.20.2.101