DOI QR코드

DOI QR Code

Research on Pre-service Teacher Education Through Understanding of Conic Sections in Non-Endidean Geometry

비유클리드 기하학에서 이차곡선의 이해를 통한 예비교사교육

  • Received : 2023.12.13
  • Accepted : 2023.12.29
  • Published : 2023.12.31

Abstract

We consider how a pre-service teacher can understand and utilize various concepts of Euclidean geometry by learning conic sections using mathematical definitions in non-Euclidean geometry. In a third-grade class of D University, we used mathematical definitions to demonstrate that learning conic sections in non-Euclidean space, such as taxicab geometry and Minkowski distance space, can aid pre-service teachers by enhancing their ability to acquire and accept new geometric concepts. As a result, learning conic sections using mathematical definitions in taxicab geometry and Minkowski distance space is expected to contribute to enhancing the education of pre-service teachers for Euclidean geometry expertise by fostering creative and flexible thinking.

예비교사가 비유클리드 기하학에서 수학적 정의를 이용한 이차곡선의 학습으로 유클리드 기하학의 다양한 개념을 어떻게 이해하고 활용할 수 있는지를 살펴본다. 본 연구에서는 D 대학교 수학교육과 3학년 수업에서 수학적 정의를 이용하여 택시기하, 민코프스키 거리공간과 같은 비유클리드 공간의 이차곡선 학습이 예비교사들에게 새로운 기하학적 개념을 습득하고 수용하는 능력 향상에 도움을 줄 수 있음을 보였다. 이러한 결과로부터 택시기하와 민코프스키 거리공간에서의 정의를 활용한 이차곡선 학습이 창의적이고 유연한 사고를 유도하여, 예비교사들의 유클리드 기하학 교육 전문성 향상에 기여할 것으로 기대된다.

Keywords

References

  1. Dreiling, K. M. (2012). Triangle construction in taxicab geometry. The Mathematics Teacher, 105(6), 474-478.
  2. Heo, N. G. (2017). Inquiry of Quadratic Curves According to Definition on Taxicab Geometry. Communications of Mathematical Education, 31(2), 103-121. https://doi.org/10.7468/JKSMEE.2017.31.2.103
  3. Hollebrands, K. F., Conner, A., & Smith, R. C. (2010). The nature of arguments provided by college geometry students with access to technology while solving problems. Journal for Research in Mathematics Education, 41(4), 324-350. https://doi.org/10.5951/jresematheduc.41.4.0324
  4. Hong, W. P., Lee, K.-W., & Lim, Y. (2022). Remaining Issues and Challenges of the 2022 Revised High School Curriculum: Based on a Teacher Survey. The Journal of Curriculum Studies, 40(1), 157-183. https://doi.org/10.15708/KSCS.40.1.7
  5. Jin, S.-S. (2019). Study of Geometrical Pre-Teacher Training -Development and application of classes for the change of perception on Mathematics. The Journal of Education Studies, 56(4), 166-182.
  6. Kemp, A., & Vidakovic, D. (2021). Ways secondary mathematics teachers apply definitions in taxicab geometry for a real-life situation: Midset. The Journal of Mathematical Behavior, 62, 100848.
  7. Kim, S. J. (2021). Development and Application of Teaching and Learning Materials for Gifted Students in Elementary School: Focusing on Taxi Geometry. Journal of Science Education for the Gifted, 13(3), 75-88. https://doi.org/10.29306/jseg.2021.13.3.75
  8. Kinach, B. M. (2012). Fostering spatial vs. metric understanding in geometry. The Mathematics Teacher, 105(7), 534-540. https://doi.org/10.5951/mathteacher.105.7.0534
  9. Krause, E. F. (1973). Taxicab geometry. The Mathematics Teacher, 66(8), 695-706. https://doi.org/10.5951/MT.66.8.0695
  10. Krause, E. F. (1987). Taxicab Geometry: An Adventure in Non-Euclidean Geometry. Mineola, NY: Dover Publications.
  11. Moore, R. C. (1994). Making the transition to formal proof. Educational Studies in Mathematics, 27(3), 249-266. https://doi.org/10.1007/BF01273731
  12. Ministry of Education [MOE]. (2022). 2022 개정 교육과정 [2022 Education Curriculum]. Sejong, Korea: Author. Retrieved from https://ncic.go.kr