• Title/Summary/Keyword: Euclidean geometry

Search Result 85, Processing Time 0.026 seconds

S/W Cinderella for Student's mental Representation about Non-Euclidean Geometry (비유클리드 기하의 정신적 표상을 위한 S/W Cinderella)

  • Kye Younghee;Shin Kyunghee
    • The Mathematical Education
    • /
    • v.44 no.2 s.109
    • /
    • pp.297-306
    • /
    • 2005
  • In this paper, we propose a computer environment class for student's mental representations about non-Euclidean geometry. Through the software Cinderella, students construct knowledge about non-Euclidean geometry and recognize differentness between Euclidean and non-Euclidean geometry. Also they recognize an existence of non-Euclidean geometry newly and its mental representations with images represented in Cinderella. In geometry class, we make students can use many representations systematically and can figure a visual internal image by emphasizing a transform process. And then students can reason about non-Euclidean geometry.

  • PDF

Research on Pre-service Teacher Education Through Understanding of Conic Sections in Non-Endidean Geometry (비유클리드 기하학에서 이차곡선의 이해를 통한 예비교사교육)

  • Jieun Kang;Daehwan Kim
    • Journal of Science Education
    • /
    • v.47 no.3
    • /
    • pp.263-272
    • /
    • 2023
  • We consider how a pre-service teacher can understand and utilize various concepts of Euclidean geometry by learning conic sections using mathematical definitions in non-Euclidean geometry. In a third-grade class of D University, we used mathematical definitions to demonstrate that learning conic sections in non-Euclidean space, such as taxicab geometry and Minkowski distance space, can aid pre-service teachers by enhancing their ability to acquire and accept new geometric concepts. As a result, learning conic sections using mathematical definitions in taxicab geometry and Minkowski distance space is expected to contribute to enhancing the education of pre-service teachers for Euclidean geometry expertise by fostering creative and flexible thinking.

Proof of the three major problems of spatial geometry using sets and plane geometry (집합과 평면기하를 활용한 공간기하의 3대 문제 증명)

  • Do, Kang Su;Ryu, Hyun ki;Kim, Kwang Su
    • East Asian mathematical journal
    • /
    • v.39 no.4
    • /
    • pp.479-492
    • /
    • 2023
  • Although Euclidean plane geometry is implemented in the middle school course, there are three major problems in high school space geometry that can be intuitively taken for granted or misinterpreted as circular arguments. In order to solve this problem, this study proved three major problems using sets, Euclidean plane geometry, and parallel line postulates. This corresponds to a logical sequence and has mathematical and mathematical educational values. Furthermore, it will be possible to configure spatial geometry using sets, and by giving legitimacy to non-Euclidean spatial geometry, it will open the possibility of future research.

Designing and Implementing High School Geometry Lessons Emphasizing the Connections between Euclidean and Analytic Geometries (GeoGebra를 활용한 논증기하와 연결된 해석기하 수업자료 개발 및 적용)

  • Kim, Eun Hye;Lee, Soo Jin
    • Journal of the Korean School Mathematics Society
    • /
    • v.19 no.4
    • /
    • pp.373-394
    • /
    • 2016
  • The "Figure Equation" chapter of current high school curriculum prevents students from relating the concept with what they studied in middle school Euclidean geometry. Woo(1998) concerns that the curriculum introduces the concept merely in algebraic ways without providing students with opportunities to relate it with their prior understanding of geometry, which is based on Euclidean one. In the present study, a sequence of GeoGebra-embedded-geometry lessons was designed so that students could be introduced to and solve problems of the Analytic Geometry by triggering their prior understanding of the Euclidean Geometry which they had learnt in middle school. The study contributes to the field of mathematics education by suggesting a sequence of geometry lessons where students could introduce to the coordinate geometry meaningfully and conceptually in high school.

사영기하학과 르네상스 미술

  • 계영희
    • Journal for History of Mathematics
    • /
    • v.16 no.4
    • /
    • pp.59-68
    • /
    • 2003
  • Mathematics and arts are reflection of the spirit of the ages, since they have human inner parallel vision. Therefore, in ancient Greek ages, the artists' cannon was actually geometric ratio, golden section. However, in middle ages, the Euclidean Geometry was disappeared according to the Monastic Mathematics, then the art was divided two categories, one was holy Christian arts and the other was secular arts. In this research, we take notice of Renaissance Painting and Perspective Geometry, since Perspective Geometry was influenced by Renaissance notorious painter, Massccio, Leonardo and Raphael, etc. They drew and painted works by mathematical principles, at last, reformed the paradigm of arts. If we can say Euclidean Geometry is tactile geometry, the Perspective Geometry can be called by visual geometry.

  • PDF

수학교육을 위한 비유크리드 기하의 지도에 관한 연구

  • Kim Do Sang
    • The Mathematical Education
    • /
    • v.4 no.1
    • /
    • pp.1-15
    • /
    • 1966
  • In accordance with the tendency of Modern Mathematics laying emphasis on Mathematical structure, that is, on axioms, it is necessary for students to be interested in structure of Geometry on Mathematics Education. In fact, it is of importance not only to obtain new ideas but also to forget old ones in the development of Mathematics. Most students do not understand the Mathematical significance of axioms, and do not know what Mathemetical truth is. Now Non-Euclidean Geometry offers opportunity to understand the essence of Mathematics better, and is no less effective than Euclidean Geometry in training student in logical inference. This thesis is a study with regard to what should be taught and how student should be guided at High school Mathematics. Chiefly Hyperbolic Geometry is discussed in connection with Abosolute Geometry. As Non-Euclidean Geometry has not appeared in our curriculum, some experiments are required before putting it into actual curriculum to find out how much students understand and how much pedagogically useful it can be. This is only a. presentation of a tentative plan, which needs to be criticized by many teachers.

  • PDF

Non-Euclidean Geometrical Characteristics of Hyperspace in Costume (복식에 표현된 초공간의 비유클리드기하학적 특성)

  • Lee, Yoon-Kyung;Kim, Min-Ja
    • Journal of the Korean Society of Costume
    • /
    • v.60 no.5
    • /
    • pp.117-127
    • /
    • 2010
  • In this study, hyperspace is a result of imagination created by means of facts and fiction, represents a transfer to determination and indetermination, and means an extension to an open form. In other words, hyperspace is a high dimensional space expanded to imagination through the combination of the viewpoint on facts in this dimension and fiction. When the 2D plane surface or 3D symmetry is destroyed, or when the frame is twisted or entangled, the non-Euclidean geometry is created eventually. And when the twisting leads to transmutation and the destruction of the form reaches the extreme; this in turn became the twisting like Mbius band. Likewise, the non-Euclidean geometry is co-related to the asymmetry of the Higgs mechanism. When the 'destruction of symmetry' is considered, symmetric theory and asymmetric world can be connected. The asymmetry in turn can maintain balance by arranging the uneven weights at different distances from the shaft. Moreover, at this the concept of the upper, lower, left and right, which was included in the original form, may be crumbled down. The destruction of the symmetry is essential in order to present forecast that coincides with the phenomenon of the real world. Non-Euclidean geometry characteristic is expressed by asymmetry, twists, and deconstruction and its representative characteristic is ambiguity. The boundary between the front, back, upper, lower, inner and outer is unclear, and it is difficult and vague to pinpoint specific location. The design that does not clearly define or determine the direction of wearing costume is indeed the non-oriented design that can be worn without getting restricted by specific direction such as front and back. Non-Euclidean geometry characteristic of hyperspace have been applied to create new shapes through the modification of the substance from traditional clothing of the eastern world to modern fashion. The way of thinking in the 'hyperspace' that used to be expressed in the costumes of the east and the west in the past became the forum for unlimited creation.

유클리드 기하학과 그리스의 미술

  • 계영희
    • Journal for History of Mathematics
    • /
    • v.16 no.2
    • /
    • pp.23-34
    • /
    • 2003
  • In this paper, we consider relationship between the mathematics and the fine arts. The former is one of the advanced sciences, the latter is one of the arts. But there is correlation between the mathematics and the arts. Here, we concern with the ancient greek mathematics, Euclidean geometry and the ancient greek arts. The ancient greek arts is classified with Geometric Style, Archaic Style, Classical Style and Hellenistic Style. The Geometric Style, Classical Style and Hellenistic Style are very effected by Euclidean geometry. Because the greek artists as keep the geometric proportion as the Euclidean's 5th postulates. The artist's cannon in just golden ratio 1:(1+$\sqrt{5}$)/2.

  • PDF

Pythagorean Theorem III : From the perspective of equiangular quadrilaterals (피타고라스의 정리 III : 등각사각형의 관점에서)

  • Jo, Kyeonghee
    • Journal for History of Mathematics
    • /
    • v.33 no.3
    • /
    • pp.155-165
    • /
    • 2020
  • Pythagorean theorem is a proposition on the relationship between the lengths of three sides of a right triangle. It is well known that Pythagorean theorem for Euclidean geometry deforms into an interesting form in non-Euclidean geometry. In this paper, we investigate a new perspective that replaces right triangles with 'proper triangles' so that Pythagorean theorem extends to non-Euclidean geometries without any modification. This is seen from the perspective that a rectangle is an equiangular quadrilateral, and a right triangle is a half of a rectangle. Surprisingly, a proper triangle (defined by Paolo Maraner), which is a half of an equiangular quadrilateral, satisfies Pythagorean theorem in many geometries, including hyperbolic geometry and spherical geometry.