DOI QR코드

DOI QR Code

Differential microbiota network according to colorectal cancer lymph node metastasis stages

  • Yeuni Yu (Biomedical Research Institute, Pusan National University School of Medicine) ;
  • Donghyun Han (Department of Medicine, Pusan National University School of Medicine) ;
  • Hyomin Kim (Interdisciplinary Program of Genomic Science, Pusan National University) ;
  • Yun Hak Kim (Periodontal Disease Signaling Network Research Center, School of Dentistry, Pusan National University) ;
  • Dongjun Lee (Department of Convergence Medicine, Pusan National University School of Medicine)
  • Received : 2023.11.23
  • Accepted : 2023.12.12
  • Published : 2023.12.31

Abstract

Purpose: Colorectal cancer (CRC) is a common malignancy worldwide and the second leading cause of cancer-related deaths. In addition, lymph node metastasis in CRC is considered an important prognostic factor for predicting disease recurrence and patient survival. Recent studies demonstrated that the microbiome makes substantial contributions to tumor progression, however, there is still unknown about the microbiome associated with lymph node metastasis of CRC. Here, we first reported the microbial and tumor-infiltrating immune cell differences in CRC according to the lymph node metastasis status. Materials and Methods: Using Next Generation Sequencing data acquired from 368 individuals diagnosed with CRC (N0, 266; N1, 102), we applied the LEfSe to elucidate microbial differences. Subsequent utilization of the Kaplan-Meier survival analysis enabled the identification of particular genera exerting significant influence on patient survival outcomes. Results: We found 18 genera in the N1 group and 3 genera in the N0 group according to CRC lymph node metastasis stages. In addition, we found that the genera Crenobacter (P=0.046), Maricaulis (P=0.093), and Arsenicicoccus (P=0.035) in the N0 group and Cecembia (P=0.08) and Asanoa (P=0.088) in the N1 group were significantly associated with patient survival according to CRC lymph node metastasis stages. Further, Cecembia is highly correlated to tumor-infiltrating immune cells in lymph node metastasized CRC. Concolusion: Our study highlights that tumor-infiltrating immune cells and intratumoral microbe diversity are associated with CRC. Also, this potential microbiome-based oncology diagnostic tool warrants further exploration.

Keywords

Acknowledgement

This work was supported by grants from the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (NRF-2021R1A2C4001466, 2022R1A5A2027161, and 2021R1A6A3A01086785).

References

  1. Huang X, Liu H, Liao X, Xiao Z, Huang Z, Li G. Prognostic factors for T1-2 colorectal cancer after radical resection: lymph node distribution is a valuable predictor of its survival. Asian J Surg 2021;44:241-6. https://doi.org/10.1016/j.asjsur.2020.06.013
  2. O'Connell JB, Maggard MA, Ko CY. Colon cancer survival rates with the new American Joint Committee on Cancer sixth edition staging. J Natl Cancer Inst 2004;96:1420-5. https://doi.org/10.1093/jnci/djh275
  3. Koh A, Backhed F. From association to causality: the role of the gut microbiota and its functional products on host metabolism. Mol Cell 2020;78:584-96. https://doi.org/10.1016/j.molcel.2020.03.005
  4. Clark A, Mach N. Role of vitamin D in the hygiene hypothesis: the interplay between vitamin D, vitamin D receptors, gut microbiota, and immune response. Front Immunol 2016;7:627.
  5. Papotto PH, Yilmaz B, Silva-Santos B. Crosstalk between γδ T cells and the microbiota. Nat Microbiol 2021;6:1110-7. https://doi.org/10.1038/s41564-021-00948-2
  6. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature 2006;444:1022-3. https://doi.org/10.1038/4441022a
  7. Helmink BA, Khan MAW, Hermann A, Gopalakrishnan V, Wargo JA. The microbiome, cancer, and cancer therapy. Nat Med 2019;25:377-88. https://doi.org/10.1038/s41591-019-0377-7
  8. He T, Cheng X, Xing C. The gut microbial diversity of colon cancer patients and the clinical significance. Bioengineered 2021;12:7046-60. https://doi.org/10.1080/21655979.2021.1972077
  9. Yang Y, Du L, Shi D, Kong C, Liu J, Liu G, et al. Dysbiosis of human gut microbiome in young-onset colorectal cancer. Nat Commun 2021;12:6757.
  10. Lehouritis P, Cummins J, Stanton M, Murphy CT, McCarthy FO, Reid G, et al. Local bacteria affect the efficacy of chemotherapeutic drugs. Sci Rep 2015;5:14554.
  11. Panebianco C, Andriulli A, Pazienza V. Pharmacomicrobiomics: exploiting the drug-microbiota interactions in anticancer therapies. Microbiome 2018;6:92.
  12. Yu T, Guo F, Yu Y, Sun T, Ma D, Han J, et al. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell 2017;170:548-63.e16. https://doi.org/10.1016/j.cell.2017.07.008
  13. Chen Y, Wu FH, Wu PQ, Xing HY, Ma T. The role of the tumor microbiome in tumor development and its treatment. Front Immunol 2022;13:935846.
  14. Sepich-Poore GD, Zitvogel L, Straussman R, Hasty J, Wargo JA, Knight R. The microbiome and human cancer. Science 2021;371:eabc4552.
  15. Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillere R, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 2018;359:91-7. https://doi.org/10.1126/science.aan3706
  16. Matson V, Fessler J, Bao R, Chongsuwat T, Zha Y, Alegre ML, et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science 2018;359:104-8. https://doi.org/10.1126/science.aao3290
  17. Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 2018;359:97-103. https://doi.org/10.1126/science.aan4236
  18. Poore GD, Kopylova E, Zhu Q, Carpenter C, Fraraccio S, Wandro S, et al. Microbiome analyses of blood and tissues suggest cancer diagnostic approach. Nature 2020;579:567-74. https://doi.org/10.1038/s41586-020-2095-1
  19. Tomczak K, Czerwinska P, Wiznerowicz M. The cancer genome atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol (Pozn) 2015;19:A68-77. https://doi.org/10.5114/wo.2014.47136
  20. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and explanation. Genome Biol 2011;12:R60.
  21. Hazra A, Gogtay N. Biostatistics series module 1: basics of biostatistics. Indian J Dermatol 2016;61:10-20. https://doi.org/10.4103/0019-5154.173988
  22. Colaprico A, Silva TC, Olsen C, Garofano L, Cava C, Garolini D, et al. TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res 2016;44:e71.
  23. Li T, Fu J, Zeng Z, Cohen D, Li J, Chen Q, et al. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res 2020;48:W509-14. https://doi.org/10.1093/nar/gkaa407
  24. Kim SH, Lim YJ. The role of microbiome in colorectal carcinogenesis and its clinical potential as a target for cancer treatment. Intest Res 2022;20:31-42. https://doi.org/10.5217/ir.2021.00034
  25. Yamaguchi N, Yamashita Y, Ikeda D, Koga T. Actinobacillus actinomycetemcomitans serotype b-specific polysaccharide antigen stimulates production of chemotactic factors and inflammatory cytokines by human monocytes. Infect Immun 1996;64:2563-70. https://doi.org/10.1128/iai.64.7.2563-2570.1996
  26. Zhang L, Liu J, Deng M, Chen X, Jiang L, Zhang J, et al. Enterococcus faecalis promotes the progression of colorectal cancer via its metabolite: biliverdin. J Transl Med 2023;21:72.
  27. Mukerji R, Kakarala R, Smith SJ, Kusz HG. Chryseobacterium indologenes: an emerging infection in the USA. BMJ Case Rep 2016;2016:bcr2016214486.
  28. Aghamajidi A, Maleki Vareki S. The effect of the gut microbiota on systemic and anti-tumor immunity and response to systemic therapy against cancer. Cancers (Basel) 2022;14:3563.
  29. Mohseni AH, Taghinezhad-S S, Casolaro V, Lv Z, Li D. Potential links between the microbiota and T cell immunity determine the tumor cell fate. Cell Death Dis 2023;14:154.
  30. Gao F, Xie K, Xiang Q, Qin Y, Chen P, Wan H, et al. The density of tumor-infiltrating lymphocytes and prognosis in resectable hepatocellular carcinoma: a two-phase study. Aging (Albany NY) 2021;13:9665-78. https://doi.org/10.18632/aging.202710