Acknowledgement
이 연구는 한국건설기술연구원 주요사업 「친환경 Carbon Eating Concrete(CEC) 제조 및 활용 기술 개발」의 연구비 지원에 의해 수행되었습니다(No. 2023-0108).
References
- Chen, Y., Liu, P., Yu, Z. (2018). Effects of environmental factors on concrete carbonation depth and compressive strength, Materials, 11(11), 2167.
- Cho, H.M., Kim, S.W., Song, J.H., Park, H.M., Park, C.W. (2015). Experimental study on mechanical properties of carbon-capturing concrete composed of blast furnace slag with whanges in cement content and exposure, International Journal of Highway Engineering, 17(4), 41-51 [in Korean]. https://doi.org/10.7855/IJHE.2015.17.4.041
- Chung, C.W., Lee, M.H., Kim, S.O., Kim, J.H. (2017). The pH reduction of the recycled aggregate originated from the waste concrete by the scCO2 treatment, Economic and Environmental Geology, 50(4), 257-266 [in Korean].
- Collier, N.C. (2016). Transition and decomposition temperatures of cement phases-a collection of thermal analysis data. Ceramics-Silikaty, 60(4), 338-343. https://doi.org/10.13168/cs.2016.0050
- Dweck, J., Buchler, P.M., Coelho, A.C.V., Cartledge, F.K. (2000). Hydration of a Portland cement blended with calcium carbonate, Thermochimica Acta, 346(1-2), 105-113. https://doi.org/10.1016/S0040-6031(99)00369-X
- El-Hassan, H., Shao, Y., Ghouleh, Z. (2013). Effect of initial curing on carbonation of lightweight concrete masonry units, ACI Materials Journal, 110(4), 441-450. https://doi.org/10.14359/51685791
- El-Hassan, H., Shao, Y. (2014). Dynamic carbonation curing of fresh lightweight concrete, Magazine of Concrete Research, 66(14), 708-718. https://doi.org/10.1680/macr.13.00222
- Gartner, E. (2004). Industrially interesting approaches to "low-CO2" cements, Cement and Concrete Research, 34(9), 1489-1498. https://doi.org/10.1016/j.cemconres.2004.01.021
- GIR. (2020). 2020 National Greenhouse Gas Inventory Report of Korea. 3F Osong Square, 210 Osongsaengmyeong-ro,Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, Republic of Korea, 28166, Greenhouse Gas Inventory and Research Center(GIR) [in Korean].
- Heo, S.U., Kim, J.H., Chung, C.W. (2021). The effect of supercritical carbonation on quality improvement of recycled fine aggregate, Journal of the Korean Recycled Construction Resources Institute, 9(1), 33-40 [in Korean]. https://doi.org/10.14190/JRCR.2021.9.1.33
- IEA. (2023). CO2 Emissions in 2022, IEA, Paris, https://www.iea.org/reports/co2-emissions-in-2022, License: CC BY 4.0
- Kashef-Haghighi, S., Ghoshal, S. (2013). Physico-chemical processes limiting CO2 uptake in concrete during accelerated carbonation curing, Industrial & Engineering Chemistry Research, 52(16), 5529-5537. https://doi.org/10.1021/ie303275e
- Kim, H.M., Park, E.S., Synn, J.H., Park, Y.C. (2008). Greenhouse gas (CO2) geological sequestration and geomechanical technology component, Tunnel and Underground Space, 18(3), 175-184 [in Korean].
- Kim, T.H, Lee, J.K., Chung, C.W., Kim, J.H., Lee, M.H., Kim, S.O. (2018). The neutralization treatment of waste mortar and recycled aggregate by using the scCO2-water-aggregate reaction, Economic and Environmental Geology, 51(4), 359-370 [in Korean]. https://doi.org/10.9719/EEG.2018.51.4.359
- Lee, J.H., Kwak, N.S., Lee, I.Y., Jang, K.R., Shim, J.G. (2012). Performance and economic analysis of domestic supercritical coal-fired power plant with post-combustion CO2 capture process, Korean Chemical Engineering Research, 50(2), 365-370 [in Korean]. https://doi.org/10.9713/kcer.2012.50.2.365
- Nord, L.O., Anantharaman, R., Bolland, O. (2009). Design and off-design analyses of a pre-combustion CO2 capture process in a natural gas combined cycle power plant, International Journal of Greenhouse Gas Control, 3(4), 385-392. https://doi.org/10.1016/j.ijggc.2009.02.001
- Park, J.H., Baek, I.H. (2009). Status and prospect of pre-combustion CO2 capture technology, KIC News, 12(1), 3-14 [in Korean].
- Park, J.W, Kim, J.H., Lee, M.H., Chung, C.W. (2018). Carbonation mechanism of hydrated cement paste by supercritical carbon dioxide, Journal of The Korea Institute of Building Construction, 18(5), 403-412 [in Korean]. https://doi.org/10.5345/JKIBC.2018.18.5.403
- Park, S.M., Moon, H., Kim, J.H., Lee, M.H., Chung, C.W. (2021). Reaction of hydrated cement paste with supercritical carbon dioxide, Construction and Building Materials, 281, 122615.
- Rao, A.B., Rubin, E.S. (2002). A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control, Environmental Science & Technology, 36(20), 4467-4475. https://doi.org/10.1021/es0158861
- Rostami, V., Shao, Y., Boyd, A.J., He, Z. (2012). Microstructure of cement paste subject to early carbonation curing, Cement and Concrete Research, 42(1), 186-193. https://doi.org/10.1016/j.cemconres.2011.09.010
- Ryu, D.H., Kim, K.H., Park, C.G., Son, Y.S. (2009). The study of concrete basic properties using oxidized electric furnace slag aggregate, Journal of the Architectural Institute of Korea: Structure & Construction, 25(8), 143-150 [in Korean].
- Shi, C., He, F., Wu, Y. (2012). Effect of pre-conditioning on CO2 curing of lightweight concrete blocks mixtures, Construction and Building Materials, 26(1), 257-267. https://doi.org/10.1016/j.conbuildmat.2011.06.020
- Yang, K.H., Moon, J.H. (2012). Design of supplementary cementitious materials and unit content of binder for reducing CO2 emission of concrete, Journal of the Korea Concrete Institute, 24(5), 597-604 [in Korean]. https://doi.org/10.4334/JKCI.2012.24.5.597