DOI QR코드

DOI QR Code

Carbonation Evaluation After CO2 Curing of Concrete Bricks Using Industrial by-products

산업부산물을 사용한 콘크리트 벽돌의 CO2 양생 후 탄산화 평가

  • Hoon Moon (Department of Structural Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Namkon Lee (Department of Structural Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Jung-Jun Park (Department of Structural Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Gum-Sung Ryu (Department of Structural Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Gi-Joon Park (Department of Structural Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Indong Jang (Department of Structural Engineering Research, Korea Institute of Civil Engineering and Building Technology)
  • 문훈 (한국건설기술연구원 구조연구본부) ;
  • 이남곤 (한국건설기술연구원 구조연구본부) ;
  • 박정준 (한국건설기술연구원 구조연구본부) ;
  • 류금성 (한국건설기술연구원 구조연구본부) ;
  • 박기준 (한국건설기술연구원 구조연구본부) ;
  • 장인동 (한국건설기술연구원 구조연구본부)
  • Received : 2023.10.16
  • Accepted : 2023.10.23
  • Published : 2023.12.30

Abstract

This study investigated the carbonation of concrete brick cured in a CO2 environment for the utilization of CO2 captured in power plants. Concrete brick specimens were produced with electric arc furnace reducing slag (ERS) and electric arc furnace oxidizing slag (EOS), and cured for 3 days in a CO2 chamber with a concentration of 20 % or in a constant temperature and humidity chamber. The weight change, compressive strength, flexural strength and carbonation depth of concrete bricks were measured. From the results, it was found that when subjected to CO2 curing, CO2 was absorbed at the level of 2.4 % of the weight of the specimen. The specimen incorporating ERS showed the highest carbonation depth, and satisfied KS F4004 standards for the concrete brick. Therefore, it is expected that the captured CO2 can be utilized in the CO2 curing process of concrete brick.

본 연구에서는 발전소에서 포집된 CO2의 활용을 위해 CO2 환경에서 양생된 콘크리트 벽돌의 탄산화를 분석하였다. 전기로 환원슬래그(ERS)와 전기로 산화슬래그를 사용하여 콘크리트 벽돌 시험체를 제작하고 20% 농도의 CO2 챔버에서 콘크리트 벽돌 시험체를 3일간 양생하여 항온항습 상태에서 양생된 시험체와 탄산화 수준을 비교하였다. 콘크리트 벽돌의 무게변화, 탄산화 깊이, 휨강도, 압축강도를 측정한 결과, CO2 환경에서 양생된 시험체는 무게의 2.4 % 수준의 CO2를 흡수하는 것으로 나타났다. ERS를 사용한 시험체가 탄산화 깊이가 가장 깊었으며, KS F 4004 콘크리트 벽돌의 규준을 만족하였다. 따라서 포집된 CO2는 콘크리트 벽돌의 CO2 양생 과정에 활용할 수 있을 것으로 기대된다.

Keywords

Acknowledgement

이 연구는 한국건설기술연구원 주요사업 「친환경 Carbon Eating Concrete(CEC) 제조 및 활용 기술 개발」의 연구비 지원에 의해 수행되었습니다(No. 2023-0108).

References

  1. Chen, Y., Liu, P., Yu, Z. (2018). Effects of environmental factors on concrete carbonation depth and compressive strength, Materials, 11(11), 2167.
  2. Cho, H.M., Kim, S.W., Song, J.H., Park, H.M., Park, C.W. (2015). Experimental study on mechanical properties of carbon-capturing concrete composed of blast furnace slag with whanges in cement content and exposure, International Journal of Highway Engineering, 17(4), 41-51 [in Korean]. https://doi.org/10.7855/IJHE.2015.17.4.041
  3. Chung, C.W., Lee, M.H., Kim, S.O., Kim, J.H. (2017). The pH reduction of the recycled aggregate originated from the waste concrete by the scCO2 treatment, Economic and Environmental Geology, 50(4), 257-266 [in Korean].
  4. Collier, N.C. (2016). Transition and decomposition temperatures of cement phases-a collection of thermal analysis data. Ceramics-Silikaty, 60(4), 338-343. https://doi.org/10.13168/cs.2016.0050
  5. Dweck, J., Buchler, P.M., Coelho, A.C.V., Cartledge, F.K. (2000). Hydration of a Portland cement blended with calcium carbonate, Thermochimica Acta, 346(1-2), 105-113. https://doi.org/10.1016/S0040-6031(99)00369-X
  6. El-Hassan, H., Shao, Y., Ghouleh, Z. (2013). Effect of initial curing on carbonation of lightweight concrete masonry units, ACI Materials Journal, 110(4), 441-450. https://doi.org/10.14359/51685791
  7. El-Hassan, H., Shao, Y. (2014). Dynamic carbonation curing of fresh lightweight concrete, Magazine of Concrete Research, 66(14), 708-718. https://doi.org/10.1680/macr.13.00222
  8. Gartner, E. (2004). Industrially interesting approaches to "low-CO2" cements, Cement and Concrete Research, 34(9), 1489-1498. https://doi.org/10.1016/j.cemconres.2004.01.021
  9. GIR. (2020). 2020 National Greenhouse Gas Inventory Report of Korea. 3F Osong Square, 210 Osongsaengmyeong-ro,Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, Republic of Korea, 28166, Greenhouse Gas Inventory and Research Center(GIR) [in Korean].
  10. Heo, S.U., Kim, J.H., Chung, C.W. (2021). The effect of supercritical carbonation on quality improvement of recycled fine aggregate, Journal of the Korean Recycled Construction Resources Institute, 9(1), 33-40 [in Korean]. https://doi.org/10.14190/JRCR.2021.9.1.33
  11. IEA. (2023). CO2 Emissions in 2022, IEA, Paris, https://www.iea.org/reports/co2-emissions-in-2022, License: CC BY 4.0
  12. Kashef-Haghighi, S., Ghoshal, S. (2013). Physico-chemical processes limiting CO2 uptake in concrete during accelerated carbonation curing, Industrial & Engineering Chemistry Research, 52(16), 5529-5537. https://doi.org/10.1021/ie303275e
  13. Kim, H.M., Park, E.S., Synn, J.H., Park, Y.C. (2008). Greenhouse gas (CO2) geological sequestration and geomechanical technology component, Tunnel and Underground Space, 18(3), 175-184 [in Korean].
  14. Kim, T.H, Lee, J.K., Chung, C.W., Kim, J.H., Lee, M.H., Kim, S.O. (2018). The neutralization treatment of waste mortar and recycled aggregate by using the scCO2-water-aggregate reaction, Economic and Environmental Geology, 51(4), 359-370 [in Korean]. https://doi.org/10.9719/EEG.2018.51.4.359
  15. Lee, J.H., Kwak, N.S., Lee, I.Y., Jang, K.R., Shim, J.G. (2012). Performance and economic analysis of domestic supercritical coal-fired power plant with post-combustion CO2 capture process, Korean Chemical Engineering Research, 50(2), 365-370 [in Korean]. https://doi.org/10.9713/kcer.2012.50.2.365
  16. Nord, L.O., Anantharaman, R., Bolland, O. (2009). Design and off-design analyses of a pre-combustion CO2 capture process in a natural gas combined cycle power plant, International Journal of Greenhouse Gas Control, 3(4), 385-392. https://doi.org/10.1016/j.ijggc.2009.02.001
  17. Park, J.H., Baek, I.H. (2009). Status and prospect of pre-combustion CO2 capture technology, KIC News, 12(1), 3-14 [in Korean].
  18. Park, J.W, Kim, J.H., Lee, M.H., Chung, C.W. (2018). Carbonation mechanism of hydrated cement paste by supercritical carbon dioxide, Journal of The Korea Institute of Building Construction, 18(5), 403-412 [in Korean]. https://doi.org/10.5345/JKIBC.2018.18.5.403
  19. Park, S.M., Moon, H., Kim, J.H., Lee, M.H., Chung, C.W. (2021). Reaction of hydrated cement paste with supercritical carbon dioxide, Construction and Building Materials, 281, 122615.
  20. Rao, A.B., Rubin, E.S. (2002). A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control, Environmental Science & Technology, 36(20), 4467-4475. https://doi.org/10.1021/es0158861
  21. Rostami, V., Shao, Y., Boyd, A.J., He, Z. (2012). Microstructure of cement paste subject to early carbonation curing, Cement and Concrete Research, 42(1), 186-193. https://doi.org/10.1016/j.cemconres.2011.09.010
  22. Ryu, D.H., Kim, K.H., Park, C.G., Son, Y.S. (2009). The study of concrete basic properties using oxidized electric furnace slag aggregate, Journal of the Architectural Institute of Korea: Structure & Construction, 25(8), 143-150 [in Korean].
  23. Shi, C., He, F., Wu, Y. (2012). Effect of pre-conditioning on CO2 curing of lightweight concrete blocks mixtures, Construction and Building Materials, 26(1), 257-267. https://doi.org/10.1016/j.conbuildmat.2011.06.020
  24. Yang, K.H., Moon, J.H. (2012). Design of supplementary cementitious materials and unit content of binder for reducing CO2 emission of concrete, Journal of the Korea Concrete Institute, 24(5), 597-604 [in Korean]. https://doi.org/10.4334/JKCI.2012.24.5.597