DOI QR코드

DOI QR Code

A Study on Rumen Fermentation Characteristics and Greenhouse Gas Emission of Forages in South Korea

국내 조사료별 반추위 내 발효특성과 온실가스 발생량에 관한 연구

  • Young Ho Joo (Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Ji Yoon Kim (Division of Applied Life Science (BK21Four), Gyeongsang National University) ;
  • Myeong Ji Seo (Division of Applied Life Science (BK21Four), Gyeongsang National University) ;
  • Chang Hyun Baeg (Division of Applied Life Science (BK21Four), Gyeongsang National University) ;
  • Seung Min Jeong (Grassland and Forages Division, National Institute of Animal Science, RDA) ;
  • Sam Churl Kim (Institute of Agriculture and Life Science, Gyeongsang National University)
  • 주영호 (경상국립대학교 농업생명과학연구원) ;
  • 김지윤 (경상국립대학교 응용생명과학부(BK21Four)) ;
  • 서명지 (경상국립대학교 응용생명과학부(BK21Four)) ;
  • 백창현 (경상국립대학교 응용생명과학부(BK21Four)) ;
  • 정승민 (국립축산과학원 초지사료과) ;
  • 김삼철 (경상국립대학교 농업생명과학연구원)
  • Received : 2023.12.12
  • Accepted : 2023.12.26
  • Published : 2023.12.29

Abstract

The present study estimated rumen fermentation characteristics and greenhouse gas emissions of different forages. Alfalfa, timothy, tall fescue, Italian ryegrass, and rice straw as the main forage sources for Hanwoo were used in the present study. Crude protein was highest in alfalfa but lowest in rice straw (p<0.05). Ether extract was higher in alfalfa and Italian ryegrass than in the other forages (p<0.05). Crude ash was highest in rice straw but lowest in tall fescue (p<0.05). Neutral detergent fiber was highest in tall fescue but lowest in alfalfa (p<0.05). Acid detergent fiber was highest in Italian ryegrass and rice straw but lowest in alfalfa (p<0.05). In vitro digestibilities of dry matter (DMD) and neutral detergent fiber (NDFD) were highest in timothy but lowest in rice straw (p<0.05). Rumen pH was highest (p<0.05) in alfalfa, while ammonia-N was higher (p<0.05) in alfalfa and Italian ryegrass than in the other forages. Total volatile fatty acid was highest (p<0.05) in timothy, while acetate and propionate were highest (p<0.05) in alfalfa and rice straw, respectively. Acetate to propionate ratio was higher (p<0.05) in alfalfa, timothy, and Italian ryegrass than in rice straw. Rice straw had lowest total gas (mL) (p<0.05) but highest its per DMD and NDFD. Rice straw had higher (p<0.05) CO2 (per DMD and NDFD) compared to alfalfa (per DMD and NDFD), timothy (per DMD and NDFD), tall fescue (per NDFD), and Italian ryegrass (per DMD). Again, rice straw had higher (p<0.05) CH4 (per DMD and NDFD) compared to timothy (per DMD and NDFD) and tall fescue (per NDFD). Therefore, this study indicates that timothy has a higher nutrient digestibility and volatile fatty acid in the rumen leading to a reduction of greenhouse gas emission.

본 연구에서는 국내 한우농가에서 주로 이용하고 있는 국내산 조사료 2종과 수입산 조사료 3종의 영양소 함량, 반추위 내 소화율, 발효특성 및 온실가스 발생량을 평가하기 위해 수행되었다. 알팔파는 조단백질 함량이 가장 높은 반면, NDF와 ADF 함량은 가장 낮았으며, 온실가스 측면에서 건물과 NDF 소화율 당 CO2 발생량이 낮았다. 한편 티모시는 건물과 NDF 소화율, 반추위 내총 VFA 함량이 가장 높았으며, 온실가스 측면에서 건물과 NDF 소화율 당 CH4 발생량이 가장 낮았다. 이상의 연구결과에서, 국내 한우농가에서 주로 이용하고 있는 조사료 중 사료가치(영양소 함량, 반추위 내 발효특성 및 간접 소화율)와 온실가스 저감 측면에서 티모시가 가장 우수한 것으로 사료된다. 따라서 국내에서 가장 많이 생산되고 있는 조사료인 이탈리안라이그라스와 볏짚의 사료가치 증진과 온실가스 저감을 위한 조사료 가공기술 개발이 필요할 것으로 사료된다.

Keywords

Acknowledgement

본 연구는 농림식품축산기술기획평가원의 연구사업(과제번호:321083-05-3-HD020)의 지원에 의해 이루어졌습니다.

References

  1. Adesogan, A.T., Krueger, N.K. and Kim, S.C. 2005. A novel, wireless, automated system for measuring fermentation gas production kinetics of feeds and its application to feed characterization. Animal Feed Science and Technology. 123(1):211-223. doi:10.1016/j.anifeedsci.2005.04.058 
  2. AOAC. 2005. Official method of analysis (18th ed.). Association of Official Analytical Chemists. Washington DC. USA. 
  3. Beuvink, J.M.W., Spoelstra, S.F. and Hogendorp, R.J. 1992. An automated method for measuring time-course of gas production of feedstuffs incubated with buffered rumen fluid. Netherlands Journal of Agricultural Science. 40(4):401-407. doi:10.18174/njas.v40i4.16501 
  4. Caraviello, D.Z., Weigel, K.A., Fricke, P.M,, Wiltbank, M.C, Florent, M.J, Cook, N.B., Nordlund, K.V., Zwald, N.R. and Rawson, C.L. 2006. Survey of management practices on reproductive performance of dairy cattle on large US commercial farms. Journal of Dairy Science. 89(12):4723-4735. doi:10.3168/jds.S0022-0302(06)72522-X 
  5. Chaudhry, A.S. and Khan, M.M.H. 2012. Impacts of different spices on in vitro rumen dry matter disappearance, fermentation and methane of wheat or ryegrass hay based substrates. Livestock Science. 146(1):84-90. doi:10.1016/j.livsci.2012.01.007 
  6. Deinum, B., Beyer, J.D., Nordfeldt, P.H., Kornher, A., Ostgard, O. and Bogaert, G.V. 1981. Quality of herbageat different latitudes. Netherlands Journal of Agricultural Science. 29(2):141-150. doi:10.18174/njas.v29i2.17014 
  7. Greenhouse Gas Inventory and Research Center (GIR). 2021. National greenhouse gas inventory report of Korea. Ministry of Environment. Korea. pp. 5-10. 
  8. Ha, J.J., Kim, B.K., Jung, D.J., Yi, J.K., Kim, D.H., Lee, J.Y. and Oh, D.Y. 2018. Effects of different roughage type on disappearance rates of nutrients in the Rumen and CH4 emission in Hanwoo cows. Information Science Society. 29(3):621-632. doi:10.7465/jkdi.2018.29.3.621 
  9. Hobson, P.N. and Stewart, C.S. 1997. The rumen microbial ecosystem (2nd ed.). London, UK: Blackie Academic and Professional. doi.org/10.1007/978-94-009-1453-7 
  10. Hristov, A. and broderick, G. 1994. Ruminal microbial protein synthesis in cows fed alfalfa silage, alfalfa hay or corn silage and fitted with only ruminal cannula. In Proceedings of the Society of Nutrition Physiology: Abstracts of Communications, VIII International Symposium on Ruminant Physiology. Hessen. Germany. 
  11. Hristov, A.N. and Ropp, J.K. 2003. Effect of dietary carbohydrate composition and availability on utilization of ruminal ammonia nitrogen for milk protein synthesis in dairy cows. Journal of Dairy Science. 86(7):2416-2427. doi:10.3168/jds.S0022-0302(03)73836-3 
  12. IPCC. 2013. Climate change 2013: The physical science basis. In: Stocker. et al. (Eds.), Working Group I contribution to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press. Cambridge. UK. 
  13. Jankson, M.G. 1977. Review article: The alkali treatment of straws. Animal Feed Science and Technology. 2(2):105-130. doi:10.1016/0377-8401(77)90013-X 
  14. Jin, Q., You, W., Tan, X., Liu, G., Zhang, X., Liu, X., Wan F. and Wei, C. 2021. Caffeic acid modulates methane production and rumen fermentation in an opposite way high-forage or high-concentrate substrate in vitro. Journal of the Science of Food and Agriculture. 101(7):3013-3020. doi:10.1002/jsfa.10935 
  15. Johnson, K.A. and Johnson, D.E. 1995. Methane emissions from cattle. Journal of Animal Science. 73(8):2483-2492. doi:10.2527/1995.7382483x 
  16. Lee, H.S. and Lee, I.D. 2000. A comparative study of nutritive value of imported roughages. Journal of the Korean Society of Grassland and Forage Science. 20(4):303-308. 
  17. Lee, H.S., Lee, I.D., Park, D.S., Park, Y.J., Kim, S.K. and Keum, J.S. 2001. A study on the nutritive value of distributed roughage in domestic market. Journal of the Korean Society of Grassland and Forage Science. 21(3):109-114. 
  18. MAFRA (Ministry of Agriculture, Food and Rural Affairs). 2013. Livestock glossary. Korean Society of Animal Science and Technology. pp. 204. 
  19. McDonald, P., Henderson, A.R. and Heron, S.J.E. 1991. The biochemistry of silage, 2nd ed. Bucks, UK: Chalcombe Publ. 
  20. Meale, S.J., Chaves, A.V., Baah, J. and McAllister, T. A. 2012. Methane production of different forages in in vitro ruminal fermentation. Asian-Australasian Journal of animal sciences. 25(1):86. doi:10.5713/ajas.2011.11249. 
  21. NIAS (National Institute of Animal Science). 2015. Livestock yearbook, 3rd place 'Forage'. pp. 1-27. 
  22. Olijhoek, D.W., Lovendahl, P., Lassen, J., Hellwing, A.L.F., Hoglund, J.K., Weisbjerg, M.R., Noel, S.J., McLean, F., Hojberg, O. and Lund, P. 2018. Methane production, rumen fermentation, and diet digestibility of Holstein and Jersey dairy cows being divergent in residual feed intake and fed at 2 forage-to-concentrate ratios. Journal of Dairy Science. 101(11):9926-9940. doi:10.3168//jds.2017-14278 
  23. Patra, A.K. and Yu, Z. 2014. Combinations of nitrate, saponin, and sulfate additively reduce methane production by rumen cultures in vitro while not adversely affecting feed digestion, fermentation or microbial communities. Bioresource Technology. 155:129-135. doi:10.1016/j.biortech.2013.12.099 
  24. Ransom, C. and Ravalitera, N. 2022. World meteorological organization. Provisional state of the global climate 2022. Published online at World Meteorological Organization.org. https://storymaps.arcgis.com/stories/5417cd9148c248c0985a5b6d028b0277 
  25. Ritchie, H. and Roser, M. 2020. CO2 and greenhouse gas emissions. Published online at OurWorldInData.org. Retrieved from https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions [Online Resource] 
  26. Van Soest, P.J., Robertson, J.B. and Lewis, B.A. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science. 74(10):3583-3597. doi:10.3168/jds.S0022-0302(91)78551-2 
  27. Waghorn, G.C. and Clark, D.A. 2004. Feeding value of pastures for ruminants. New Zealand Veterinary Journal. 52(6):320-331. doi:10.1080/00480169.2004.36448 
  28. Yu, P., Christensen, D.A., McKinnon, J.J. and Markert, J.D. 2003. Effect of variety and maturity stage on chemical composition, carbohydrate and protein subfractions, in vitro rumen degradability and energy values of timothy and alfalfa. Canadian Journal of Animal Science. 83(2):279-290. doi:10.4141/A02-053 
  29. Zhang, Q., Yu, Z., Wang, X.G. and Na, R.S. 2017. Effects of chlorpyrifos and chlorantraniliprole on fermentation quality of alfalfa (Medicago sativa L.) silage inoculated with or without Lactobacillus plantarum LP. Animal Science Journal. 88(3):456-462. doi:10.1111/asj.12637