DOI QR코드

DOI QR Code

Development of Physical Cell Lysis Using a Spiked CNT Membrane for Polyhydroxybutyrate Recovery

폴리하드록시부틸레이트 회수를 위한 물리적 세포 파쇄용 돌기형 탄소나노튜브 분리막 제작

  • Jiwon Mun (Department of Biological Science and Bioengineering, Inha University) ;
  • Youngbin Baek (Department of Biological Science and Bioengineering, Inha University)
  • 문지원 (인하대학교 바이오시스템융합학과) ;
  • 백영빈 (인하대학교 바이오시스템융합학과)
  • Received : 2023.12.04
  • Accepted : 2023.12.07
  • Published : 2023.12.31

Abstract

Conventional extraction methods for polyhydroxybutyrate (PHB), a sustainable alternative to petroleum-based plastics, cause a decrease in molecular weight and a change in properties. In this work, we developed a method to extract PHB accumulated in microorganisms by physical disruption through filtration using a spiked carbon nanotube (CNT) membrane with functionalized CNT. In addition, filtration of the PHB-containing microbial solution was performed to confirm PHB extraction, which was found to be 4% more efficient than chloroform, the most used extraction method. These results indicate that the spiked CNT membrane has potential in the bioplastics recovery process.

석유기반 플라스틱의 대체제인 폴리하드록시부틸레이트(polyhydroxybutyrate, PHB)의 기존 추출방법은 분자량 감소 및 물성 변형을 일으킨다. 본 연구에서는 기능화 된 탄소나노튜브(carbon nanotube, CNT)를 부착한 돌기형 탄소나노튜브 분리막의 여과를 통해 물리적 파쇄를 발생시켜 미생물 내 축적된 PHB를 추출하고자 하였다. 돌기형 탄소나노튜브 분리막의 물리적 파쇄를 확인하기 위해 대장균 용액으로 여과 실험을 수행하여 불활성화를 관찰하였다. 또한 PHB를 축적한 미생물 용액의 여과를 수행하여 PHB가 추출되었는지 확인하였더니 가장 대표적인 추출방법인 chloroform과 비교하여도 여과로 인한 추출이 4% 높은 성능을 가진 것을 관찰하였다. 본 결과를 통해 친환경적 바이오 플라스틱 회수를 위한 돌기형 탄소나노튜브 분리막의 적용 가능성을 확인하였다.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(2022R1A4A3029607).

References

  1. V. Siracusa, P. Rocculi, S. Romani, and M. Dalla Rosa, "Biodegradable polymers for food packaging: a review", Trends Food Sci. Technol., 19, 634 (2008). https://doi.org/10.1016/j.tifs.2008.07.003
  2. M. Koller, "A review on established and emerging fermentation schemes for microbial production of polyhydroxyalkanoate (PHA) biopolyesters", Fermentation, 4, 30 (2018). https://doi.org/10.3390/fermentation4020030
  3. A. J. Anderson and E. A. Dawes, "Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates", Microbiol Rev., 54, 450 (1990). https://doi.org/10.1128/mr.54.4.450-472.1990
  4. C. Kourmentza, J. Placido, N. Venetsaneas, A. Burniol-Figols, C. Varrone, H. N. Gavala, and M. A. Reis, "Recent advances and challenges towards sustainable polyhydroxyalkanoate (PHA) production", Bioengineering, 4, 55 (2017). https://doi.org/10.3390/bioengineering4020055
  5. P. A. Holmes, "Applications of PHB-a microbially produced biodegradable thermoplastic," Phys. Technol., 16, 32 (1985). https://doi.org/10.1088/0305-4624/16/1/305
  6. U. Bhardwaj, P. Dhar, A. Kumar, and V. Katiyar, "Polyhydroxyalkanoates (PHA)-cellulose based nanobiocomposites for food packaging applications", ACS Symposium Series, 1162, 275 (2014).
  7. G. Q. Chen and Q. Wu, "The application of polyhydroxyalkanoates as tissue engineering materials", Biomaterials, 26, 6565 (2005). https://doi.org/10.1016/j.biomaterials.2005.04.036
  8. A. F. M. De Mello, L. P. de Souza Vandenberghe, C. M. B. Machado, M. S. Brehmer, P. Z. de Oliveira, P. Binod, R. Sindhu, and C. R. Soccol, "Polyhydroxyalkanoates production in biorefineries: A review on current status, challenges and opportunities", Bioresour. Technol., 393, 130078 (2023).
  9. A. Gholami, M. Mohkam, S. Rasoul-Amini, and G. Younes, "Industrial production of polyhydroxyalkanoates by bacteria: Opportunities and challenges", Minerva Biotechnol., 28, 59 (2016).
  10. S. Heimersson, F. Morgan-Sagastume, G. M. Peters, A. Werker, and M. Svanstro, "Methodological issues in life cycle assessment of mixed-culture polyhydroxyalkanoate production utilising waste as feedstock", N. Biotechnol., 31, 4 (2014). https://doi.org/10.1016/j.nbt.2013.09.003
  11. M. H. Madkour, D. Heinrich, M. A. Alghamdi, I. I. Shabbaj, and A. Steinbuchel, "PHA recovery from biomass", Biomacromolecules, 14, 2963 (2013). https://doi.org/10.1021/bm4010244
  12. N. Yabueng and S. Chanprateep Napathorn, "Toward non-toxic and simple recovery process of poly(3-hydroxybutyrate) using the green solvent 1,3- dioxolane", Process Biochemistry, 69, 197 (2018). https://doi.org/10.1016/j.procbio.2018.02.025
  13. D. Heinrich, M. H. Madkour, M. A. Al-Ghamdi, I. I. Shabbaj, and A. Steinbuchel, "Large scale extraction of poly(3-hydroxybutyrate) from Ralstonia eutropha H16 using sodium hypochlorite", AMB Express, 2, 1 (2012).
  14. J. Yu and L. X. L. Chen, "Cost-effective recovery and purification of polyhydroxyalkanoates by selective dissolution of cell mass", Biotechnol. Prog., 22, 547 (2006). https://doi.org/10.1021/bp050362g
  15. I. Melih Tamer, M. Moo-Young, and Y. Chisti, "Disruption of alcaligeneslatus for recovery of poly(-hydroxybutyric acid): Comparison of highpressure homogenization, bead milling, and chemically induced lysis", Ind. Eng. Chem. Res., 37, 1807 (1998). https://doi.org/10.1021/ie9707432
  16. S. T. L. Harrison, "Bacterial cell disruption: A key unit operation in the recovery of intracellular products", Biotechnol. Adv., 9, 217 (1991). https://doi.org/10.1016/0734-9750(91)90005-G
  17. J. Li and Y. Zhang, "Cutting of multi walled carbon nanotubes", Appl. Surf. Sci., 252, 2944 (2006). https://doi.org/10.1016/j.apsusc.2005.04.039
  18. A. G. Osorio, I. C. L. Silveira, V. L. Bueno, and C. P. Bergmann, "H2SO4/HNO3/HCl-Functionalization and its effect on dispersion of carbon nanotubes in aqueous media", Appl. Surf. Sci., 255, 2485 (2008).
  19. R. Rastogi, R. Kaushal, S. K. Tripathi, A. L. Sharma, I. Kaur, and L. M. Bharadwaj, "Comparative study of carbon nanotube dispersion using surfactants", J. Colloid Interface Sci., 328, 421 (2008).
  20. T. R. Shamala, M. S. Divyashree, R. Davis, K. S. Latha Kumari, S. V. N. Vijayendra, and B. Raj, "Production and characterization of bacterial polyhydroxyal-kanoate copolymers and evaluation of their blends by fourier transform infrared spectroscopy and scanning electron microscopy", Indian J. Microbiol., 49, 251 (2009).
  21. A. M. Rodrigues, R. D. G. Franca, M. Dionisio, C. Sevrin, C. Grandfils, M. A. Reis, and N. D. Lourenco, "Polyhydroxyalkanoates from a mixed microbial culture: Extraction optimization and polymer characterization", Polymers, 14, 2155
  22. S. Kang, M. Pinault, L. D. Pfefferle, and M. Elimelech, "Single-walled carbon nanotubes exhibit strong antimicrobial activity", Proc. Natl. Acad. Sci. U.S.A., 100, 8670 (2003).
  23. S. J. Klaine, P. J. Alvarez, G. E. Batley, T. F. Fernandes, R. D. Handy, D. Y. Lyon, S. Mahendra, M. J. McLaughlin, and J. R. Lead, "Nanomaterials in the environment: Behavior, fate, bioavailability, and effects", Environ. Toxicol. Chem., 27, 1825 (2008). https://doi.org/10.1897/08-090.1
  24. L. Guo, D. G. Morris, X. Liu, C. Vaslet, R. H. Hurt, and A. B. Kane, "Iron bioavailability and redox activity in diverse carbon nanotube samples", Chem. Mater., 19, 3472 (2007). https://doi.org/10.1021/cm062691p
  25. S. Liu, L. Wei, L. Hao, N. Fang, M. W. Chang, R. Xu, Y. Yang, and Y. Chen, "Sharper and faster 'Nano darts' kill more bacteria: A study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube", ACS Nano, 3, 3891 (2009).
  26. Y. Baek, C. Kim, D. K. Seo, T. Kim, J. S. Lee, Y. H. Kim, K. H. Ahn, S. S. Bae, S. C. Lee, J. Lim, K. Lee, and J. Yoon, "High performance and antifouling vertically aligned carbon nanotube membrane for water purification", J. Memb. Sci., 460, 171 (2014).
  27. M. Lazic, R. Gudneppanavar, K. Whiddon, D. Sauvageau, L. Y. Stein, and M. Konopka, "In vivo quantification of polyhydroxybutyrate (PHB) in the alphaproteobacterial methanotroph, Methylocystis sp. Rockwell", Appl. Microbiol. Biotechnol., 106, 811 (2022).  https://doi.org/10.1007/s00253-021-11732-x