Acknowledgement
이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(2022R1A4A3029607).
References
- V. Siracusa, P. Rocculi, S. Romani, and M. Dalla Rosa, "Biodegradable polymers for food packaging: a review", Trends Food Sci. Technol., 19, 634 (2008). https://doi.org/10.1016/j.tifs.2008.07.003
- M. Koller, "A review on established and emerging fermentation schemes for microbial production of polyhydroxyalkanoate (PHA) biopolyesters", Fermentation, 4, 30 (2018). https://doi.org/10.3390/fermentation4020030
- A. J. Anderson and E. A. Dawes, "Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates", Microbiol Rev., 54, 450 (1990). https://doi.org/10.1128/mr.54.4.450-472.1990
- C. Kourmentza, J. Placido, N. Venetsaneas, A. Burniol-Figols, C. Varrone, H. N. Gavala, and M. A. Reis, "Recent advances and challenges towards sustainable polyhydroxyalkanoate (PHA) production", Bioengineering, 4, 55 (2017). https://doi.org/10.3390/bioengineering4020055
- P. A. Holmes, "Applications of PHB-a microbially produced biodegradable thermoplastic," Phys. Technol., 16, 32 (1985). https://doi.org/10.1088/0305-4624/16/1/305
- U. Bhardwaj, P. Dhar, A. Kumar, and V. Katiyar, "Polyhydroxyalkanoates (PHA)-cellulose based nanobiocomposites for food packaging applications", ACS Symposium Series, 1162, 275 (2014).
- G. Q. Chen and Q. Wu, "The application of polyhydroxyalkanoates as tissue engineering materials", Biomaterials, 26, 6565 (2005). https://doi.org/10.1016/j.biomaterials.2005.04.036
- A. F. M. De Mello, L. P. de Souza Vandenberghe, C. M. B. Machado, M. S. Brehmer, P. Z. de Oliveira, P. Binod, R. Sindhu, and C. R. Soccol, "Polyhydroxyalkanoates production in biorefineries: A review on current status, challenges and opportunities", Bioresour. Technol., 393, 130078 (2023).
- A. Gholami, M. Mohkam, S. Rasoul-Amini, and G. Younes, "Industrial production of polyhydroxyalkanoates by bacteria: Opportunities and challenges", Minerva Biotechnol., 28, 59 (2016).
- S. Heimersson, F. Morgan-Sagastume, G. M. Peters, A. Werker, and M. Svanstro, "Methodological issues in life cycle assessment of mixed-culture polyhydroxyalkanoate production utilising waste as feedstock", N. Biotechnol., 31, 4 (2014). https://doi.org/10.1016/j.nbt.2013.09.003
- M. H. Madkour, D. Heinrich, M. A. Alghamdi, I. I. Shabbaj, and A. Steinbuchel, "PHA recovery from biomass", Biomacromolecules, 14, 2963 (2013). https://doi.org/10.1021/bm4010244
- N. Yabueng and S. Chanprateep Napathorn, "Toward non-toxic and simple recovery process of poly(3-hydroxybutyrate) using the green solvent 1,3- dioxolane", Process Biochemistry, 69, 197 (2018). https://doi.org/10.1016/j.procbio.2018.02.025
- D. Heinrich, M. H. Madkour, M. A. Al-Ghamdi, I. I. Shabbaj, and A. Steinbuchel, "Large scale extraction of poly(3-hydroxybutyrate) from Ralstonia eutropha H16 using sodium hypochlorite", AMB Express, 2, 1 (2012).
- J. Yu and L. X. L. Chen, "Cost-effective recovery and purification of polyhydroxyalkanoates by selective dissolution of cell mass", Biotechnol. Prog., 22, 547 (2006). https://doi.org/10.1021/bp050362g
- I. Melih Tamer, M. Moo-Young, and Y. Chisti, "Disruption of alcaligeneslatus for recovery of poly(-hydroxybutyric acid): Comparison of highpressure homogenization, bead milling, and chemically induced lysis", Ind. Eng. Chem. Res., 37, 1807 (1998). https://doi.org/10.1021/ie9707432
- S. T. L. Harrison, "Bacterial cell disruption: A key unit operation in the recovery of intracellular products", Biotechnol. Adv., 9, 217 (1991). https://doi.org/10.1016/0734-9750(91)90005-G
- J. Li and Y. Zhang, "Cutting of multi walled carbon nanotubes", Appl. Surf. Sci., 252, 2944 (2006). https://doi.org/10.1016/j.apsusc.2005.04.039
- A. G. Osorio, I. C. L. Silveira, V. L. Bueno, and C. P. Bergmann, "H2SO4/HNO3/HCl-Functionalization and its effect on dispersion of carbon nanotubes in aqueous media", Appl. Surf. Sci., 255, 2485 (2008).
- R. Rastogi, R. Kaushal, S. K. Tripathi, A. L. Sharma, I. Kaur, and L. M. Bharadwaj, "Comparative study of carbon nanotube dispersion using surfactants", J. Colloid Interface Sci., 328, 421 (2008).
- T. R. Shamala, M. S. Divyashree, R. Davis, K. S. Latha Kumari, S. V. N. Vijayendra, and B. Raj, "Production and characterization of bacterial polyhydroxyal-kanoate copolymers and evaluation of their blends by fourier transform infrared spectroscopy and scanning electron microscopy", Indian J. Microbiol., 49, 251 (2009).
- A. M. Rodrigues, R. D. G. Franca, M. Dionisio, C. Sevrin, C. Grandfils, M. A. Reis, and N. D. Lourenco, "Polyhydroxyalkanoates from a mixed microbial culture: Extraction optimization and polymer characterization", Polymers, 14, 2155
- S. Kang, M. Pinault, L. D. Pfefferle, and M. Elimelech, "Single-walled carbon nanotubes exhibit strong antimicrobial activity", Proc. Natl. Acad. Sci. U.S.A., 100, 8670 (2003).
- S. J. Klaine, P. J. Alvarez, G. E. Batley, T. F. Fernandes, R. D. Handy, D. Y. Lyon, S. Mahendra, M. J. McLaughlin, and J. R. Lead, "Nanomaterials in the environment: Behavior, fate, bioavailability, and effects", Environ. Toxicol. Chem., 27, 1825 (2008). https://doi.org/10.1897/08-090.1
- L. Guo, D. G. Morris, X. Liu, C. Vaslet, R. H. Hurt, and A. B. Kane, "Iron bioavailability and redox activity in diverse carbon nanotube samples", Chem. Mater., 19, 3472 (2007). https://doi.org/10.1021/cm062691p
- S. Liu, L. Wei, L. Hao, N. Fang, M. W. Chang, R. Xu, Y. Yang, and Y. Chen, "Sharper and faster 'Nano darts' kill more bacteria: A study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube", ACS Nano, 3, 3891 (2009).
- Y. Baek, C. Kim, D. K. Seo, T. Kim, J. S. Lee, Y. H. Kim, K. H. Ahn, S. S. Bae, S. C. Lee, J. Lim, K. Lee, and J. Yoon, "High performance and antifouling vertically aligned carbon nanotube membrane for water purification", J. Memb. Sci., 460, 171 (2014).
- M. Lazic, R. Gudneppanavar, K. Whiddon, D. Sauvageau, L. Y. Stein, and M. Konopka, "In vivo quantification of polyhydroxybutyrate (PHB) in the alphaproteobacterial methanotroph, Methylocystis sp. Rockwell", Appl. Microbiol. Biotechnol., 106, 811 (2022). https://doi.org/10.1007/s00253-021-11732-x