DOI QR코드

DOI QR Code

Comparison of Biological Responses and Heat Shock Protein 70 Expression in Chironomidae by Exposure UV and O3

UV와 O3 노출에 따른 깔따구류의 생물학적 반응 및 열충격 단백질 70 발현

  • Ji-Hoon Kim (Department of Ocean Integrated Science, Chonnam National University) ;
  • Won-Seok Kim (Department of Ocean Integrated Science, Chonnam National University) ;
  • Jae-Won Park (Department of Ocean Integrated Science, Chonnam National University) ;
  • Bong-Soon Ko (Department of Ocean Integrated Science, Chonnam National University) ;
  • Kiyun Park (Fisheries Science Institute, Chonnam National University) ;
  • Ihn-Sil Kwak (Department of Ocean Integrated Science, Chonnam National University)
  • 김지훈 (전남대학교 해양융합과학과) ;
  • 김원석 (전남대학교 해양융합과학과) ;
  • 박재원 (전남대학교 해양융합과학과) ;
  • 고봉순 (전남대학교 해양융합과학과) ;
  • 박기연 (전남대학교 수산과학연구소) ;
  • 곽인실 (전남대학교 해양융합과학과)
  • Received : 2023.12.02
  • Accepted : 2023.12.29
  • Published : 2023.12.31

Abstract

UV and O3 are materials used in the water treatment process, and many studies have been reported to remove organic matters, contaminants, and microorganisms. In this study, we were investigated effects of Chirnomidae (Chironomus flaviplumus, Chironomus riparius), which are contamination indicator species to exposure UV and O3 for the survival rate, body color change and gene expression response. The survival rate of C. flaviplumus exposed to UV decreased to about 70% after 24 hours, and C. riparius about 50%. There was no change in the survival rate of C. flaviplumus exposed to O3, and C. riparius decreased to 95% after 10 minutes of exposure, but there was no change during the subsequent exposure time. In addition, UV and O3 exposure to the two species in body color faded in a time-dependent. In the HSP70 gene expression, C. riparius showed an increase in expression after UV exposure compared to the control group, and a significant difference was shown 12 hours after exposure (P<0.05). C. flaviplumus exposed to O3 showed a relatively low expression compared to the control group, and showed a significant difference at 10 minutes and 1 hour after exposure (P<0.05). These results reported the ecotoxicological effects on Chironomidae according to UV and O3 exposure. Therefore, the results of this study can be used as basic data to understand the effects of UV and O3, which are disinfectants used in water treatment plants, on Chirnomidae entering plants.

UV와 O3는 정수처리 공정에 이용되는 물질로 유기물, 오염물질 및 미생물을 제거하는 것으로 많은 연구가 보고되어 있다. 본 연구에서는 저서성 대형무척추동물 중 오염지표 생물이며 실내 사육 중인 깔따구(C. flaviplumus, C. riparius)를 이용하여 UV와 O3 노출에 따른 생존율, 체 Fig. 5. Heatmap of relative mRNA expression of HSP70 in C. riparius and C. flaviplumus exposed to UV and O3. 색 변화 및 열충격 단백질(Heat Shock Protein 70) 발현 변화를 관찰하였다. UV에 노출된 C. flaviplumus의 생존율은 24시간 후 70% 감소하였으며, C. riparius는 50%로 감소하였다. O3에 노출된 C. flaviplumus는 생존율의 변화가 없었으며 C. riparius는 노출 10분 후 95%로 감소하였으나, 이후 노출 시간 동안 변화가 없었다. 또한, 체색 변화에서 두 종에 대한 UV와 O3 노출은 시간 의존적으로 붉은색의 체색이 옅어지는 현상을 관찰하였다. HSP70 유전자 발현에서 C. riparius는 UV 노출 후 대조군에 비해 발현이 증가하였으며, 노출 12시간 후에서 유의한 차이를 보였다(P<0.05). O3에 노출된 C. flaviplumus는 대조군에 비해 상대적으로 낮은 발현이 관찰되었으며, 노출 10분과 1시간 후에서 유의한 차이를 보였다 (P<0.05). 이와 같은 결과는 UV와 O3 노출에 따른 깔따구에 대한 생태독성학적 영향을 보고하였다. 따라서 본 연구 결과는 정수장에서 이용되는 소독물질인 UV와 O3가 정수장 내로 유입되는 깔따구에 주는 영향을 파악할 수 있는 기초자료로서 활용될 수 있을 것이다.

Keywords

Acknowledgement

이 논문은 한국연구재단의 지원 (NRF-2018-R1A6A1A-03024314), 환경부의 재원으로 한국환경산업기술원 수생태계 건강성 확보 기술개발사업의 지원 (2021003050001)과 국립생물자원관 의 지원(20210505793-00)을 받아 수행된 연구임.

References

  1. Arambourou, H., L. Llorente, I. Moreno-Ocio, O. Herrero, C. Barata, I. Fuertes, N. Delorme, L. Mendez-Fernandez and R. Planello. 2020. Exposure to heavy metal-contaminated sediments disrupts gene expression, lipid profile, and life history traits in the midge Chironomus riparius. Water Research 168: 115165.
  2. Campos, D., A.R.R. Silva, S. Loureiro, K. Grabicova, A.V. Stanova, A.M.V.M. Soares and J.L.T. Pestana. 2019. Two-generational effects of Benzophenone-3 on the aquatic midge Chironomus riparius. Science of the Total Environment 669: 983-990. https://doi.org/10.1016/j.scitotenv.2019.03.023
  3. Clancy, J.L., T.M. Hargy., M.M. Marshall and J.E. Dyksen. 1998. UV light inactivation Cryptosporidium oocysts. Journal-American Water Works Association 90(9): 92-102. https://doi.org/10.1002/j.1551-8833.1998.tb08501.x
  4. Elendt, B.P. 1990. Selenium deficiency in Crustacea: An ultrastructural approach to antennal damage in Daphnia magna Straus. Protoplasma 154: 25-33. https://doi.org/10.1007/BF01349532
  5. Ha, M.H. and J. Choi. 2008. Chemical-induced alteration of hemoglobin expression in the 4th instar larvae of Chironomus tentans Mg. (Diptera: Chironomidae). Environmental Toxicology and Pharmacology 25(3): 393-398. https://doi.org/10.1016/j.etap.2007.12.006
  6. Han, J., Z. Qin, J. Zhang, W. Wang, J. Wu., Y. Lu and L. Sun. 2021. Acute toxicity and ecological risk assessment of 4, 4ʹ-dihydroxybenzophenone and 4-MBC in ultraviolet (UV)-filters. PloS One 16(4): e0249915.
  7. Kim, M.C. and S.S. Han. 2010. Two-dimensional gel analysis of stress proteins identified in Chironomus flaviplumus (Diptera: Chironomidae) exposed to 4-nonylphenol. Entomological Research 40(3): 164-170. https://doi.org/10.1111/j.1748-5967.2010.00280.x
  8. Kim, W.S., B.H. Im, C. Hong, S.W. Choi, K.Y. Park and I.S. Kwak. 2017. Gene expression of Chironomus riparius Heat Shock Protein 70 and developmental retardation exposure so salinity. Korea Journal of Ecology and Environment 50(3): 305-313. https://doi.org/10.11614/KSL.2017.50.3.305
  9. Kim, W.S., B.H. Choi, M.K. Kim, S.H. Chae and I.S. Kwak. 2020a. Expression of Heat Shock Protein 70 gene and body color changes in non-biting midge larvae (Glyptotendipes tokunagai) effected by O3 treatment. Korea Journal of Ecology and Environment 53(4): 324-330. https://doi.org/10.11614/KSL.2020.53.4.324
  10. Kim, W.S., K.Y. Park and I.S. Kwak. 2020b. Stress evaluation to heavy metal exposure using molecular marker in Chironomus riparius. Korea Journal of Ecology and Environment 53(2): 165-172. https://doi.org/10.11614/KSL.2020.53.2.165
  11. Koagouw, W., R.J. Hazell and C. Ciocan. 2021. Induction of apoptosis in the gonads of Mytilus edulis by metformin and increased temperature, via regulation of HSP70, CASP8, BCL2 and FAS. Marine Pollution Bulletin 173: 113011.
  12. Kregel, K.C. 2002. Invited review: heat shock protein: modifying factors in physiological stress responses and acquired thermotolerance. Journal of Applied Physiology 92: 2177-2186. https://doi.org/10.1152/japplphysiol.01267.2001
  13. Kwak, I.S. and W.C. Lee. 2004. Effects of the ecdysteroid agonist tebufenozide on freshwater chironomids. Korea Journal of Ecology and Environment 37(1): 96-101.
  14. Kwak, I.S., J.W. Park, W.S. Kim and K.Y. Park. 2020. Morphological and genetic species identification in the Chironomus larvae (Diptera: Chironomidae) found in domestic tap water purification plants. Korea Journal of Ecology and Environment 53(3): 286-294. https://doi.org/10.11614/KSL.2020.53.3.286
  15. Lee, G.C., T.K. Yoon, B.I. Noh and B.H. Moon. 2003. Performance of ozonation in advanced water treatment process. Theories and Applications of Chemical Engineering 9(2): 2252-2255.
  16. Lee, S.M., S.B. Lee, C.H. Park and J. Choi. 2006. Expression of heat shock protein and hemoglobin genes in Chironomus tentans(Diptera, chironomidae) larvae exposed to various environmental pollutants: a potential biomarker of freshwater monitoring. Chemosphere 65(6): 1074-1081. https://doi.org/10.1016/j.chemosphere.2006.02.042
  17. Licht, L.E. and K.P. Grant. 1997. The effects of ultraviolet radiation on the biology of amphibians. American Zoologist 37(2): 137-145. https://doi.org/10.1093/icb/37.2.137
  18. Matlok, N., T. Piechowiak, I. Kapusta, K. Krolikowski and M. Balawejder. 2022. Induction of Biosynthesis Antioxidant Molecules in Young Barley Plants by Trioxygen. Molecules 27(21): 7195.
  19. Martin-Folgar, R. and J.L. Martinez-Guitarte. 2017. Cadmium alters the expression of small heat shock protein genes in the aquatic midge Chironomus riparius. Chemosphere 169: 485-492. https://doi.org/10.1016/j.chemosphere.2016.11.067
  20. Martinez-Guitarte, J.L. 2018. Transcriptional activity of detoxification genes is altered by ultraviolet filters in Chironomus riparius. Ecotoxicology and Environmental Safety 149: 64-71. https://doi.org/10.1016/j.ecoenv.2017.11.017
  21. Martinez-Paz, P., M. Morales, J. Urien, G. Morcillo and J.L. Martinez-Guitarte. 2017. Endocrine-related genes are altered by antibacterial agent triclosan in Chironomus riparius aquatic larvae. Ecotoxicology and Environmental Safety 140: 185-190. https://doi.org/10.1016/j.ecoenv.2017.02.047
  22. Matsumura, Y. and H.N. Ananthaswamy. 2004. Toxic effects of ultraviolet radiation on the skin. Toxicology and Applied Pharmacology 195(3): 298-308. https://doi.org/10.1016/j.taap.2003.08.019
  23. Miller, D.B., S.J. Snow, A. Henriquez, M.C. Schladweiler, A.D. Ledbetter, J.E. Richards, D.L. Andrews and U.P. Kodavanti. 2016. Systemic metabolic derangenment, pulmonary effects, and insulin insufficiency following subchronic ozone exposure in rats. Toxicology and Applied Pharmacology 306: 47-57.
  24. Muniz-Gonzalez, A.B. and J.L. Martinez-Guitarte. 2018. Effects of single exposure and binary mixtures of ultraviolet filters octocrylene and 2-ethylhexyl 4-(dimethylamino) benzoate on gene expression in the freshwater insect Chironomus riparius. Environmental Science and Pollution Research 25: 35501-35514. https://doi.org/10.1007/s11356-018-3516-7
  25. Muniz-Gonzalez, A.B. and J.L. Martinez-Guitarte. 2020. Combined effects of benzophenone-3 and temperature on gene expression and enzymatic activity in the aquatic larvae Chironomus riparius. Science of the Total Environment 698: 134292.
  26. Nevalainen, L., M.V. Rantala, T.P. Luoto, A.E.K. Ojala and M. Rautio. 2016. Long-term changes in pigmentation of arctic Daphnia provide potential for reconstructing aquatic UV exposure. Quaternary Science Reviews 144: 44-50. https://doi.org/10.1016/j.quascirev.2016.05.022
  27. Ozaez, I., G. Morcillo and J.L. Martinez-Guitarte. 2016. Ultraviolet filters differentially impact the expression of key endocrine and stress genes in embryos and larvae of Chironomus riparius. Science of the Total Environment 557: 240-247. https://doi.org/10.1016/j.scitotenv.2016.03.078
  28. Panis, L.I., B. Goddeeris and R. Verheyen. 1996. On the relationship between vertical microdistribution and adaptions to oxygen stress in littoral Chironomidae (Diptera). Hydrobiologia 318: 61-67. https://doi.org/10.1007/BF00014132
  29. Park, C.B., J.Y. Jang, S.H. Kim and Y.J. Kim. 2017. Single- and mixture toxicity of three organic UV-filters, ethylhexyl methoxycinnamate, octocrylene, and avobenzone on Daphnia magna. Ecotoxicology and Environmental Safety 137: 57-63. https://doi.org/10.1016/j.ecoenv.2016.11.017
  30. Park, K. and I.S. Kwak. 2010. Molecular effects of endocrine-disruptng chemicals on the Chironomus riparius estrogen-related receptor gene. Chemosphere 79(9): 934-941. https://doi.org/10.1016/j.chemosphere.2010.03.002
  31. Park, K.Y., J.G. Park, J.K. Kim and I.S. Kwak. 2010. Biological and molecular responses of Chironomus riparius(Diptera, Chironomidae) to herbicide 2,4-D (2,4-dichlorophenoxyacetic acid). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 151(4): 439-446. https://doi.org/10.1016/j.cbpc.2010.01.009
  32. Park, K.Y. and I.S. Kwak. 2014. The effect of temperature gradients on endocrine signaling and antioxidant gene expression during Chironomus riparius development. Science of the Total Environment 470: 1003-1011. https://doi.org/10.1016/j.scitotenv.2013.10.052
  33. Pisarenko, A.N., B.D. Stanford, D. Yan, D. Gerrity and S.A. Snyder. 2012. Effcts of ozone and ozone/peroxide on trace organic contaminants and NDMA in drinking water and water reuse applications. Water Research 46(2): 316-326. https://doi.org/10.1016/j.watres.2011.10.021
  34. Planello, R., J.L. Martinez-Guitarte and G. Morcillo. 2008. The endocrine disruptor bisphenol A increases the expression of HSP70 and ecdysone receptor genes in the aquatic larvae of Chironomus riparius. Chemosphere 71(10): 1870-1876. https://doi.org/10.1016/j.chemosphere.2008.01.033
  35. Rozas, O., C. Vidal, C. Baeza, W.F. Jardim, A. Rossner and H.D. Mansilla. 2016. Organic micropollutants (OMPs) in natural waters: Oxidation by UV/H2O2 treatment and toxicity assessment. Water Research 98: 109-118. https://doi.org/10.1016/j.watres.2016.03.069
  36. Scherer, C., R. Wolf, J. Volker, F. Stock, N. Brennhold, G. Reifferscheid and M. Wagner. 2020. Toxicity of micro-plastics and natural particles in the freshwater dipteran Chironomus riparius: Same same but different?. Science of the Total Environment 711: 134604.
  37. Sharma, M. and J.B. Hudson. 2008. Ozone gas is an effective and practical antibacterial agent. American Journal of Infection Control 36(8): 559-563. https://doi.org/10.1016/j.ajic.2007.10.021
  38. Song, L., L. Wu, D. Ni, Y. Chang, W. Xu and K. Xing. 2006. The cDNA cloning and mRNA expression of heat shock protein 70 gene in the haemocytes of bay scallop (Argopecten irradians, Lamarck 1819) responding to bacteria challenge and naphthalin stress. Fish & Shelfish Immunology 21(4): 335-345. https://doi.org/10.1016/j.fsi.2005.12.011
  39. Stanford, B.D., A.N. Pisarenko, R.D. Holbrook and S.A. Snyder. 2011. Preozonation effects on the reduction of reverse osmosis membrane fouling in water reuse. Ozone: Science & Engineering 33(5): 379-388. https://doi.org/10.1080/01919512.2011.607385
  40. Tornaletti, S. and G.P. Pfeifer. 1996. UV damage and repair mechanisms in mammalian cells. Bioessays 18(3): 221-228. https://doi.org/10.1002/bies.950180309
  41. Xu, X.H. 2019. Immune response, MT and HSP70 gene expression, and bioaccumulation induced by lead exposure of the marine crab, Charybdis japonica. Aquatic Toxicology 210: 98-105. https://doi.org/10.1016/j.aquatox.2019.02.013
  42. You, S.H., D.H. Tseng and W.C. Hsu. 2007. Effect and mechanism of ultrafiltration membrane fouling removal by ozonation. Desalination 202(1-3): 224-230. https://doi.org/10.1016/j.desal.2005.12.058
  43. Zhu, H., X. Wen and X. Huang. 2010. Membrane organic fouling and the effect of pre-ozonation in microfiltration of secondary effluent organic matter. Journal of Membrane Science 352(1-2): 213-221. https://doi.org/10.1016/j.memsci.2010.02.019