DOI QR코드

DOI QR Code

Zn 도핑을 통한 (K,Na)NbO3-Bi(Ni,Ta)O3 세라믹의 미세구조 및 에너지 저장 물성 제어

Modulation of Microstructure and Energy Storage Performance in (K,Na)NbO3-Bi(Ni,Ta)O3 Ceramics through Zn Doping

  • 김주은 (경북대학교 신소재공학부 금속신소재공학과) ;
  • 박선화 (경북대학교 탄소중립 지능형 에너지시스템 지역혁신 선도연구센터) ;
  • 민유호 (경북대학교 신소재공학부 금속신소재공학과)
  • Jueun Kim (School of Materials Science and Engineering, Kyungpook National University) ;
  • Seonhwa Park (Regional Leading Research Center for Smart Energy System, Kyungpook National University) ;
  • Yuho Min (School of Materials Science and Engineering, Kyungpook National University)
  • 투고 : 2023.11.24
  • 심사 : 2023.12.06
  • 발행 : 2023.12.28

초록

Lead-free perovskite ceramics, which have excellent energy storage capabilities, are attracting attention owing to their high power density and rapid charge-discharge speed. Given that the energy-storage properties of perovskite ceramic capacitors are significantly improved by doping with various elements, modifying their chemical compositions is a fundamental strategy. This study investigated the effect of Zn doping on the microstructure and energy storage performance of potassium sodium niobate (KNN)-based ceramics. Two types of powders and their corresponding ceramics with compositions of (1-x)(K,Na)NbO3-xBi(Ni2/3Ta1/3)O3 (KNN-BNT) and (1-x)(K,Na)NbO3-xBi(Ni1/3Zn1/3Ta1/3)O3 (KNN-BNZT) were prepared via solid-state reactions. The results indicate that Zn doping retards grain growth, resulting in smaller grain sizes in Zn-doped KNN-BNZT than in KNN-BNT ceramics. Moreover, the Zn-doped KNN-BNZT ceramics exhibited superior energy storage density and efficiency across all x values. Notably, 0.9KNN-0.1BNZT ceramics demonstrate an energy storage density and efficiency of 0.24 J/cm3 and 96%, respectively. These ceramics also exhibited excellent temperature and frequency stability. This study provides valuable insights into the design of KNN-based ceramic capacitors with enhanced energy storage capabilities through doping strategies.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Science and ICT (2021R1A5A8033165 and RS-2023-00241159).

참고문헌

  1. W. Wang, Y. Pu, X. Guo, Tao. Ouyang, Y. Shi, M. Yang, J. Li, R. Shi and G. Liu: Ceram. Int., 45 (2019) 14684. 
  2. M. Zhang, H. Yang, D. Li, L. Ma and Y. Lin: J. Mater. Chem. C, 8 (2020) 8777. 
  3. Q. Jin, L. Zhao, X. Zhang, R. Zhang and B. Cui: Ceram. Int., 47 (2021) 20617. 
  4. L. Zhang, Y. Pu, M. Chen, X. Peng, B. Wang and J. Shang: J. Eur. Ceram. Soc., 43 (2023) 5713.  https://doi.org/10.1016/j.jeurceramsoc.2023.06.037
  5. H. Qi, A. Xie and R. Zuo, Energy Stor. Mater., 45 (2022) 541. 
  6. C. Li, J. Liu, W. Bai, S. Wu, P. Zheng, J. Zhang, Z. Pan and J. Zhai: J. Mater. Chem. A, 10 (2022) 9535. 
  7. J. Lin, G. Ge, K. Zhu, H. Bai, B. Sa, F. Yan, G. Li, C. Shi, J. Zhai, X. Wu and Q. Zhang: Chem. Eng. J., 444 (2022) 136538. 
  8. H. Zhang, Z. Zhu, Z. Yao, H. Hao, L. Wang, M. Cao and H. Liu: Crystals, 13 (2023) 84. 
  9. G. Wang, Z. Lu, Y. Li, L. Li, H. Ji, A. Feteira, D. Zhou, D. Wang, S. Zhang and I. M Reaney: Chem. Rev., 121 (2021) 6124. 
  10. Z. Li, Z. Wang, Q. Yang, D. Zhang, M. Fang, Z. Li, B. Gao, J. Zhang, N. Lei, L. Zheng, Z. Wang, X. Yan, D. Wang, C. Long and Y. Niu: Ceram. Int., 49 (2023) 9615. 
  11. L. Tan, X. Wang, W. Zhu, A. Li and Y. Wang: J. Alloy. Compd., 874 (2021) 159770. 
  12. M. Waqar, H. Wu, J. Chen, K. Yao and J. Wang: Adv. Mater., 34 (2022) 2106845. 
  13. Q. Chai, F. Zhang, Q. Zhou, Z. Peng, D. Wu, P. Liang, L. Wei, X. Chao and Z. Yang: Small, 19 (2023) 2207464. 
  14. Z. Dai, F. Zhang, M. N. Rafiq, C. Liu, X. Wang, S. Gu and S. Yasui: ACS Omega, 8 (2023) 7883. 
  15. R. Hu, Y. Lin, M. Zhang, Q. Yuan and H. Yang: Mater. Today Energy, 30 (2022) 101185. 
  16. E. Im, S. Park, G.-T. Hwang, D. C. Hyun, Y. Min and G. D. Moon: doi.org/10.1002/smll.202304360 
  17. L. Wu, Y. Huan, X. Wang, C. Li, Y. Luo and T. Wei: J. Mater. Sci., 57 (2022) 15876. 
  18. J. Y. Park, T. A. Duong, S. S. Lee, C. W. Ahn, B. W. Kim, H.-S. Han and J.-S. Lee: J. Korean Inst. Electr. Electron. Mater. Eng., 36 (2023) 513. 
  19. Y.-J. Kim, G.-Y. Lee, I.-G. Lee, I.-P. Hong and J.-H. Kim: J. Korean Inst. Electr. Electron. Mater. Eng., 35 (2022) 610. 
  20. M. Zhang, H. Yang, Y. Yu and Y. Lin: Chem. Eng. J., 421 (2021) 131465. 
  21. A. Chen, T. Gao, R. Lang, Z. Tan, J. Xing and J. Zhu: J. Eur. Ceram. Soc., 43 (2023) 2442.  https://doi.org/10.1016/j.jeurceramsoc.2023.01.025
  22. L. Chen, S. Deng, H. Liu, J. Wu, H. Qi and J. Chen: Nature Commun., 13 (2022) 3089. 
  23. Y. Li, Y. Zhe n, W. Wang, Z. Fang, Z. Jia, J. Zhang, G. Zhong, J. Wu, Y. Yan, Q. Xue and F. Zhu: J. Eur. Ceram. Soc., 40 (2020) 2357. 
  24. F. Pang, X. Chen, C. Sun, J. Shi, X. Li, H. Chen, X. Dong and H. Zhou: ACS Sustainable Chem. Eng., 8 (2020) 14985. 
  25. N. J. Loh, L. Simao, C. A. Faller, A. De Noni Jr and O. R. K. Montedo: Ceram. Int., 42 (2016) 12556. 
  26. Y. Pan, J. Feng, L. Huang, Z. Xu and Y. Chen: Mater. Today Commun., 34 (2023) 105340.  https://doi.org/10.1016/j.mtcomm.2023.105340
  27. X. Qia, X. Zhang, D. Wu, X. Chao and Z. Yang: J. Adv. Dielectr., 8 (2018) 1830006. 
  28. Q. Chai, X. Zhao, X. Chao and Z. Yang: RSC Adv., 7 (2017) 28428. 
  29. J. Zhao, M. Cao, Z. Wang, Q. Xu, L. Zhang, Z. Yao, H. Hao and H. Liu: J. Mater. Sci.-Mater. El., 27 (2016) 466. 
  30. S. Halder, S. Bhuyan and R. N. P. Choudhary: Eng. Sci. Technol. Int. J., 22 (2019) 376. 
  31. J. Taub, L. Ramajo and M. S. Castro: Ce ram. Int., 39 (2013) 3555. 
  32. L. Ramajo, J. Taub and M. S. Castro: Mater. Res., 17 (2014) 728. 
  33. Y. Zhao, M. Jiang, L. Li, T. Wang, P. Ren and G. Rao: J. Mater. Sci.-Mater. El., 34 (2023) 689. 
  34. Y. Huan, T. Wei, X. Wang, X. Liu, P. Zhao and X. Wang: Chem. Eng. J., 425 (2021) 129506. 
  35. G. F. Harrington and J. Santiso: J. Electroceram., 47 (2021) 141.