DOI QR코드

DOI QR Code

Analysis of Habitat Conditions by Tree Density and Discharge in the Geum River

수목밀도와 유량에 따른 금강의 물리서식처 변화 분석

  • Mikyoung Choi (Institute of Agricultural Science, Chungnam National University) ;
  • Taeun Kang (Water Land Research Group Division for Integrated Water Management, Korea Environment Institute) ;
  • Changlae Jang (Department of Civil Engineering, Korea National University of Transportation)
  • 최미경 (충남대학교 농업과학연구소) ;
  • 강태운 (한국환경연구원 물국토연구본부 통합물관리실) ;
  • 장창래 (국립한국교통대학교 토목공학과)
  • Received : 2023.12.05
  • Accepted : 2023.12.18
  • Published : 2023.12.31

Abstract

Tree in river have environmental functions such as ecosystem preservation and flood control functions that protect the riverbank. On the other hand, excessive tree development can have the negative effect of fixing the sand bar and reducing the cross-sectional area. Nays2D simulation results performing two flow conditions (average dam operation discharge and two-year frequency discharge) and four tree density conditions (current, zero, low, high tree density) used as input data for PHABSIM to calculate WUA (Weighted Usable Area). The results show that riverbed changes occur more significantly in the zero tree density than presence of trees, which could have a positive impact on the biological habitat environment of Zacco platypus.

하천에서의 수목은 생물다양성 증진의 환경적 기능과 하안을 보호하는 치수적 기능을 가지는 반면, 과도한 수목 발달로 인하여 사주가 고정화되고, 통수단면적이 부족해지는 부정적인 영향을 미치기도 한다. 본 연구에서는 실제 하천 현장조사를 통하여 수목밀도를 산정하고, 수목밀도를 반영한 2차원 수치모의 (Nays2D) 결과를 활용하여 유량과 수목밀도에 따른 하상변동이 생물 서식처 변화에 미치는 영향을 PHABSIM모의를 통하여 추정한다. 2가지 유량 조건 (평균 댐운영 방류량과 2년빈도 방류량)과 4가지 수목 밀도 조건 (2021년 수목 밀도, 밀도를 0으로 조정한 전체 벌채, 밀도를 0.5배 감소한 경우, 밀도를 2배 증가하는 경우)을 이용한 8개의 시나리오를 Nays2D모의를 수행하여 도출한 하상변동 결과를 PHABSIM의 입력자료로 활용하여 피라미를 대상으로 시나리오 별 가중가용면적 (WUA)을 산정하였다. 그 결과 수목이 없는 경우에 하상 변동이 더 현저하게 발생하게 되고, 그에 따라 피라미 서식 환경에 긍정적인 영향을 미칠 수 있음을 추정할 수 있었다.

Keywords

Acknowledgement

본 연구는 환경부의 재원으로 한국환경산업기술원의 수생태계 건강성 확보 기술개발사업 (2020003050002)과 가뭄대응관리 혁신기술개발사업 (2022003610004)의 지원을 받아 연구되었습니다.

References

  1. Choi, B.W., Jang, J.Y., and Choi, S.U. 2021. Investigation of the change in physical habitat in the Geum-gang River by modifying dam operations to natural flow regime. Journal of the Korea Water Resources Association 54(11): 985-998. (in Korean) 
  2. Hur, J.W. and Kim, J.K. 2009. Assessment of Riverine Health Condition and Estimation of Optimal Ecological Flowrate Considering Fish Habitat in downstream of Yongdam Dam. Journal of the Korea Water Resources Association 42(6): 481-491. (in Korean)  https://doi.org/10.3741/JKWRA.2009.42.6.481
  3. Hwang, H., Jang, C.L., and Kang, M.S. 2022. Numerical analysis of deposition and channel change in the vegetation zone. Journal of the Korea Water Resources Association 56(1): 23-34. (in Korean) 
  4. Jang, C.L., Baek, T.H., Kang, T.U., and Ock, G.Y. 2021. Numerical analysis of morphological changes by opening gates of Sejong Weir. Journal of the Korea Water Resources Association 54(8): 629-641. (in Korean) 
  5. Johnson, W.C. 1994. Woodland expansion in the Platte River, Nebraska: Patterns and causes. Ecological Monographs 64(1): 45-84.  https://doi.org/10.2307/2937055
  6. Kang, H.S. 2010. Development of Physical Fish Habitat Suitability Index. 
  7. Kim, D.H., Kim, W., Kim, E.S., Ock, G.Y., Jang, C.L., Choi, M.K., and Cho, K.H. 2020. Applications and Perspectives of Fluvial Bio-geomorphology in the Stream Management of South Korea. Ecology and Resilient Infrastructure 7(1): 1-14. (in Korean) 
  8. Kim, H.S., Park, M.H., and Woo, H.S. 2014. Numerical Experiments of Vegetation Growth Effects on Bed Change Patterns. Ecology and Resilient Infrastructure 1(2): 68-81. (in Korean)  https://doi.org/10.17820/eri.2014.1.2.068
  9. K-water. 2018. A Research on Estimation and Securing of Environmental Flow.
  10. K-water. 2022. An analysis of basic river surveys and river management of the dam downstream. 
  11. Lee, S.J., Kim, S.K., and Choi, S.U. 2014. Physical Habitat Simulation Considering Stream Morphology Change due to Flood. Journal of the Korean Society of Civil Engineers 34(3): 805-812. (in Korean)  https://doi.org/10.12652/Ksce.2014.34.3.0805
  12. MOLIT (Ministry of Land, Infrastructure and Transport). 2007. Standards for tree planting and management in river. 
  13. Park, J.S., Jang, S.J., and Song, I.H. 2020. Estimation of an Optimum Ecological Stream Flow in the Banbyeon Stream Using PHABSIM - Focused on Zacco platypus and Squalidus chankaensis tsuchigae. Journal of the Korean Society of Agricultural Engineers 62(6): 51-62. (in Korean) 
  14. Shin, Y., Kang, T. Jang, C., and Kim, S. 2022. Numerical analysis on flow depending on changes in vegetation density in meandering channel. Proceedings of the 2022 KWRA, Busan. 
  15. Tabacchi, E. and Tabacchi, A.M. 1996. Landscape structure and diversity in riparian plant communities: a longitudinal comparative study. Regulated River:Research & Management 12: 367-390.  https://doi.org/10.1002/(SICI)1099-1646(199607)12:4/5<367::AID-RRR424>3.0.CO;2-X
  16. USDA, 1998. Stream Corridor Restoration Principles, Processes, and Practices.
  17. Woo, H.S. and Park, M.H. 2016. Cause-based Categorization of the Riparian Vegetative Recruitment and Corresponding Research Direction. Ecology and Resilient Infrastructure 3(3): 207-211. (in Korean)  https://doi.org/10.17820/eri.2016.3.3.207
  18. Woo, H.S., Cho, K.H., Jang, C.L., and Lee, C.J. 2019. Fluvial Processes and Vegetation - Research Trends and Implications. Ecology and Resilient Infrastructure 6(2) : 89-100. (in Korean) https://doi.org/10.17820/ERI.2019.6.2.089