DOI QR코드

DOI QR Code

Mineral and Compressive Strength Characteristics of Calcium Silicate and Calcium Sulfoaluminate Mixed Cement in Carbon Dioxide Atmosphere

이산화탄소 분위기에서 칼슘실리케이트와 칼슘설포알루미네이트 혼합시멘트의 광물 및 압축강도 특성

  • Received : 2023.10.16
  • Accepted : 2023.11.07
  • Published : 2023.12.31

Abstract

Calcium silicate cement (CSC) is an environmentally sustainable, low-carbon cement and has garnered significant attention in recent studies. However, the pre-curing step required to activate the carbon dioxide reaction and to handle the sample. This study aimed to examine the viability of extending the application of CSC without pre-curing by enhancing initial strength by mixing calcium sulfoaluminate (CSA) fast-hardening cement into CSC. The investigation assessed changes in compression strength and Q-XRD mineral characteristics concerning variations in the mixing ratio of CSC and CSA fast-hardening cement within a carbon dioxide atmosphere. The compressive strength results indicated that the 3-day and 7-day strengths were 14.18 MPa and 22.98 MPa, respectively, under the 50% CSC condition, meeting the type 1 cement KS standard. Mineral characteristics analysis revealed an increase in calcite mineral, a byproduct of the carbon dioxide reaction, contributing to strength enhancement. Even after seven days, substantial quantities of unreacted rankinitene and pseudowollastonite were observed, as well as dicalcium silicate and yeelimite, which are hydrated minerals. This observation was confirmed the possibility of strength improvement after 7 days.

칼슘실리케이트 시멘트(Calcium silicate cement, CSC)는 친환경 저탄소 시멘트로써 최근에 많은 연구가 진행되고 있다. 하지만 이산화탄소 반응 활성화와 시료 handling을 위하여 사전경화 단계를 진행하여야하는 어려움이 있다. 본 연구에서는 CSC에 칼슘설포아루미네이트(Calcium sulfoaluminate, CSA) 속경시멘트를 혼합하여 초기강도 발현으로 사전경화 없이 사용할 수 있는 CSC의 확대적용 가능성을 살펴보고자 하였다. 이를 위하여 이산화탄소 분위기에서 CSC 와 CSA 속경성 시멘트 혼합비율 변화에 따른 압축강도와 Q-XRD 광물특성 함량 변화를 측정하였다. 압축강도 측정결과, CSC 50% 조건에서 3일과 7일 압축강도가 각 각 14.18MPa과 22.98MPa로 1종시멘트 KS규격을 만족하였다. 광물특성 분석을 통하여 이산화탄소 반응생성물인 calcite 광물이 증가하여 강도발현에 기여했음을 알 수 있었다. 7일 경과 후에도 수화광물인 dicalcium silicate 및 yeelimite광물뿐 아니라, 이산화탄소와 반응하지 않은 rankiniten 및 pseudowollastonite 광물이 다량 관찰되어 7일이후의 강도발현 가능성을 확인하였다.

Keywords

Acknowledgement

본 연구는 2022년도 산업통상자원부 재원으로 산업기술평가관리원(KEIT)의 이산화탄소 반응경화 시멘트 제조기술 사업(RS-2022-00155662) 연구비지원을 받아 수행하였습니다.

References

  1. Duo Zhanga, Zaid Ghoulehb and Yixin Shao, 2017 : Review on carbonation curing of cement-based materials, J. CO2 Util., 21, pp.119-131. https://doi.org/10.1016/j.jcou.2017.07.003
  2. Jain, J., Atakan, V., DeCristofaro, N., et al., 2015 : Performance of Calcium Silicate-Based Carbonated Concretes vs. Hydrated Concretes under Freeze-Thaw Environments, The Masterbuilder, pp.66-89.
  3. Meyer, V., Cristofaro, N.D., Bryant, J., et al., 2018 : Solidia Cement an Example of Carbon Capture and Utilization, Engeneering Materials, 761, pp.197-203. https://doi.org/10.4028/www.scientific.net/KEM.761.197
  4. V. Prigiobbe, M. Hanchen and M. Werner et al., 2009 : Mineral carbonation process for CO2 sequestration. Energy Procedia. 1, pp.4885-4890, https://doi.org/10.1016/j.egypro.2009. 02.318.
  5. Kristoff Svensson, Andreas Neumann and Herbert Pollmann, et al., 2018 : The Conversion of Wollastonite to CaCO3 Considering Its Use for CCS Application as Cementitious Material, Applied Sciences, 8, 304, pp.1-18, https://doi.org/10.3390/app8020304.
  6. Caijun Shi, Fuqiang He and Yanzhong Wu, 2012 : Effect of pre-conditioning on CO2 curing of lightweight concrete blocks mixtures, Constr. Build. Mater. 26(1), pp.257-267. https://doi.org/10.1016/j.conbuildmat.2011.06.020
  7. Duo Zhang and Yixin Shao, 2016 : Early age carbonation curing for precast reinforced concretes, Constr. Build. Mater., 113, pp.134-143. https://doi.org/10.1016/j.conbuildmat.2016.03.048
  8. Abu Zakir Morshed and Yixin Shao, Influence of moisture content on CO2 uptake in lightweight concrete subject to early carbonation, J. Sustainable Cement-Based Mater., 2(2), pp.144-160.
  9. Melaku N. Seifu, Amanuel Bersisa and Ki-Yeon Moon, et al., 2023 : Exploring reaction and carbonation products of calcium silicate cement, J. CO2 Util., 71, pp.1-6, https://doi.org/10.1016/j.jcou.2023.102471.
  10. Wouter J.J. Huijgen, Geert-Jan Witkamp, Rob N.J. Comansa, 2006 : Mechanisms of aqueous wollastonite carbonation as a possible CO2 sequestration process, Chem. Eng. Sci., 61, pp.4242-4251. https://doi.org/10.1016/j.ces.2006.01.048
  11. Kojima, T., Nagamine, A., Ueno, N., et al., 1997 : Absorption and fixation of carbon dioxide by rock weathering, Energy Convers. Manag. 38, pp.461-466. https://doi.org/10.1016/S0196-8904(96)00311-1
  12. O'Connor, W.K., Dahlin, D.C. and Rush, G.E., et al., 2005 : Aqueous mineral carbonation: mineral availability, pretreatment, reaction parameters, and process studies, DOE/ARCTR -04-002, Albany Research Center, Albany, OR, USA.
  13. J. Seo, S. Kim and H.N. Yoon, et al., 2022 : Effect of the molar ratio of calcium sulfate over ye'elimite on the reaction of CSA cement/slag blends under an accelerated carbonation condition, J. Build. Eng., 46, pp.1-11, https://doi.org/10.1016/j.jobe.2021. 103785.