DOI QR코드

DOI QR Code

Ecological Connectivity and Network Analysis of the Urban Center in a Metropolitan City

대도시 도심의 생태적 연결성 및 연결망 분석

  • Jaegyu Cha (Division of Climate & Ecology, National Institute of Ecology)
  • 차재규 (국립생태원 기후생태연구실)
  • Received : 2023.11.20
  • Accepted : 2023.12.14
  • Published : 2023.12.31

Abstract

The disconnection and fragmentation of ecological spaces that occur during the development process pose a significant threat to biodiversity. Urban center areas with high development pressure are particularly susceptible to low connectivity due to a scarcity of ecological space. This issue tends to be more pronounced in larger cities.To address this challenge, continuous efforts are needed to assess and improve the current state of ecological space connectivity at the level of individual projects and urban management. However, there is a lack of discussion regarding the analysis and improvement of ecological connectivity in metropolitan cities In line with this objective, this study evaluated the connectivity of ecological spaces in the city centers of Seoul, Busan, Daegu, Incheon, Gwangju, Daejeon, and Ulsan. The evaluation revealed that city centers exhibited lower connectivity of ecological spaces compared to their peripheries or the overall city. In addition, in the ecological network analysis that reflected regional characteristics, such as the species distribution model conducted on Daejeon, 510 optimal paths connecting forests of more than 1ha were derived. This study is significant as an example of deriving an ecological network based on regional characteristics, including quantitative figures necessary for establishing goals to improve urban ecological connectivity and biodiversity. It is anticipated that the results can be utilized to propose directions for enhancing ecological connectivity in environmental impact assessments or urban management and to establish an evaluation framework.

개발 과정에서 발생하는 생태공간의 단절과 파편화는 생물다양성의 위협 요소이다. 특히 개발 압력이 높은 도심은 생태공간이 부족하여 연결성이 매우 낮을 것이다. 이러한 문제는 대도시에서 더욱 두드러지게 나타나는 경향이 있다. 이를 해결하기 위해 개별 사업이나 도시관리 수준에서 생태적 연결성 현황을 파악하고 개선하는 지속적인 노력이 필요하다. 그러나 대도시의 생태적 연결성 현황 파악과 개선에 대한 논의가 부족한 실정이다. 따라서 본 연구는 우리나라 대도시 서울, 부산, 대구, 인천, 광주, 대전, 울산의 도심이 가진 생태적 연결성을 평가하였다. 평가 결과 도심은 외곽이나 도시 전체와 비교해 연결성이 낮았다. 그리고 종분포모델 등 지역 특성을 반영하여 대전을 대상으로 수행한 생태적 연결망을 분석하여 1ha 이상 산림을 이어주는 최적 경로 510개를 도출하였다. 본 연구는 도시의 생태적 연결성 개선 목표 제시에 필요한 정량적 수치와 생물다양성을 포함한 지역 특성에 따른 연결망을 도출한 사례로서 의미가 있다. 환경영향평가나 도시관리에서 생태적 연결성을 개선하는 방향을 제시하고 평가 체계를 구축하는 데 결과를 활용할 수 있을 것으로 기대된다.

Keywords

Acknowledgement

본 논문은 환경부의 재원으로 국립생태원의 지원을 받아 수행하였습니다(NIE-B-2023-37).

References

  1. Beninde J, Veith M, Hochkirch A. 2015. Biodiversity in cities needs space: a meta-analysis of factors determining intra-urban biodiversity variation, Ecology letters, 18(6); 581-592. https://doi.org/10.1111/ele.12427
  2. Bradley AP. 1997. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern recognition, 30(7); 1145-1159. https://doi.org/10.1016/S0031-3203(96)00142-2
  3. Chan L, Hillel O, Elmqvist T, Werner P, Holman N, Mader A, Calcaterra E. 2014. User's manual on the Singapore index on cities' biodiversity (also known as the City Biodiversity Index), Singapore; National Parks Board, Singapore.
  4. Chan L, Hillel O, Werner P, Holman N, Coetzee I, Galt R, Elmqvist T. 2021. Handbook on the Singapore Index on Cities' Biodiversity (also known as the City Biodiversity Index), Montreal, CBD Technical Series, 98.
  5. Darvishi A, Mobarghaee Dinan N, Barghjelveh S, Yousefi M. 2020. Assessment and spatial planning of landscape ecological connectivity for biodiversity management (Case study: Qazvin province), Iranian Journal of Applied Ecology, 9(1); 15-29.
  6. Ersoy E, Jorgensen A, Warren PH. 2019. Identifying multispecies connectivity corridors and the spatial pattern of the landscape, Urban Forestry & Urban Greening, 40; 308-322. https://doi.org/10.1016/j.ufug.2018.08.001
  7. Girvetz EH, Thorne JH, Berry AM, Jaeger JA. 2007. Integrating Habitat Fragmentation Analysis into Transportation Planning Using the Effective Mesh Size Landscape Metric, UC Davis: Road Ecology Center.
  8. Heller NE, Zavaleta ES. 2009. Biodiversity management in the face of climate change: a review of 22 years of recommendations. Biological conservation, 142(1); 14-32. https://doi.org/10.1016/j.biocon.2008.10.006
  9. Hernandez PA, Franke I, Herzog SK, Pacheco V, Paniagua L, Quintana HL, Soto A, Swenson JJ, Tovar C, Valqui TH, Vargas J, Young BE. 2008. Predicting species distributions in poorly-studied landscapes, Biodiversity and conservation, 17; 1353-1366. https://doi.org/10.1007/s10531-007-9314-z
  10. Hilty J, Worboys GL, Keele A, Woodley S, Lausche B, Locke H, Carr M, Pulsford I, Pittock J, White JW, Theobald DM, Levine J, Reuling M, Watson JEM, Ament R, Tabor GM. 2020. Guidelines for conserving connectivity through ecological networks and corridors, Best practice protected area Guidelines Series, 30; 122.
  11. Hostetler M, Allen W, Meurk C. 2011. Conserving urban biodiversity? Creating green infrastructure is only the first step, Landscape and Urban Planning, 100(4); 369-371.
  12. Jaeger JA. 2015. Improving environmental impact assessment and road planning at the landscape scale, Handbook of road ecology, 32-42.
  13. Jeong E, Cho M, Cho H, Cho B, Han S. 2021. Characteristics of forest road cut slopes affecting the movement of mammals in South Korea, Forest Science and Technology, 17(3);155-161. https://doi.org/10.1080/21580103.2021.1967789
  14. Kang WM, Song YK, Kim HG, Kim NC, Song WK. 2019. Quantitative Analysis and Visualization of Terrestrial Landscape Connectivityin South Korea, The Korean Cadastre Information Association, 21(2); 198-207. [Korean Literature] https://doi.org/10.46416/JKCIA.2019.08.21.2.198
  15. Karenlampi PP. 2011. Age distribution of trees in stationary forest system, Journal of Theoretical Biology, 270(1);13-18.
  16. Kim ES, Lee DK, Yoon EJ, Park CY. 2019. Exploration of Optimal urban green space using unused land-To improve green connectivity and thermal environment, Journal of the Korean Society of Environmental Restoration Technology, 22(5); 45-56. [Korean Literature] https://doi.org/10.13087/KOSERT.2019.22.5.45
  17. Kim J, Kwon H, Seo C, Kim M. 2014. A nationwide analysis of mammalian biodiversity hotspots in South Korea, Journal of environmental impact assessment, 23(6); 453-465. [Korean Literature] https://doi.org/10.14249/eia.2014.23.6.453
  18. Koen EL, Bowman J, Sadowski C, Walpole AA. 2014. Landscape connectivity for wildlife: development and validation of multispecies linkage maps, Methods in Ecology and Evolution, 5(7); 626-633. https://doi.org/10.1111/2041-210X.12197
  19. Kong F, Yin H, Nakagoshi N, Zong Y. 2010. Urban green space network development for biodiversity conservation: Identification based on graph theory and gravity modeling, Landscape and Urban Planning, 95(1-2); 16-27. https://doi.org/10.1016/j.landurbplan.2009.11.001
  20. Kor L, O'Hickey B, Hanson M, Coroi M. 2022. Assessing habitat connectivity in environmental impact assessment: a case-study in the UK context, Impact Assessment and Project Appraisal, 40(6); 495-506. https://doi.org/10.1080/14615517.2022.2128557
  21. Krosby M, Tewksbury J, Haddad NM, Hoekstra J. 2010. Ecological connectivity for a changing climate, Conservation Biology, 24(6); 1686-1689. https://doi.org/10.1111/j.1523-1739.2010.01585.x
  22. Ministry of Environment. 2008. Guidelines for the Establishment of Urban Ecological Axis. [Korean Literature]
  23. Park S. 2015. Spatial assessment of landscape ecological connectivity in different urban gradient, Environmental Monitoring and Assessment, 187; 1-20. https://doi.org/10.1007/s10661-014-4167-x
  24. Patterson C, Casasanta Mostaco F, Jaeger JA. 2022a. Lack of consideration of ecological connectivity in Canadian environmental impact assessment: Current practice and need for improvement, Impact Assessment and Project Appraisal, 40(6); 481-494. https://doi.org/10.1080/14615517.2022.2135232
  25. Patterson C, Torres A, Coroi M, Cumming K, Hanson M, Noble B, Tabor G, Treweek J, Jaeger JA. 2022b. Treatment of ecological connectivity in environmental assessment: A global survey of current practices and common issues, Impact Assessment and Project Appraisal, 40(6); 460-474. https://doi.org/10.1080/14615517.2022.2099728
  26. Phillips SJ, Dudik M. 2008. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation, Ecography, 31(2); 161-175. https://doi.org/10.1111/j.0906-7590.2008.5203.x
  27. Rudd H, Vala J, Schaefer V. 2002. Importance of backyard habitat in a comprehensive biodiversity conservation strategy: a connectivity analysis of urban green spaces, Restoration Ecology, 10(2); 368-375. https://doi.org/10.1046/j.1526-100X.2002.02041.x
  28. Rudnick DA, Ryan SJ, Beier P, Cushman SA, Dieffenbach F, Epps CW, Gerber L, Hartter J, Jenness JS, Kintsch J, Merenlender AM, Perkl RM, Preziosi DV, Trombulak SC. 2012. The role of landscape connectivity in planning and implementing conservation and restoration priorities, Issues in Ecology, (16); 1-23.
  29. Song WK, Kim EY. 2012. A comparison of machine learning species distribution methods for habitat analysis of the Korea water deer (Hydropotes inermis argyropus), Korean Journal of Remote Sensing, 28(1); 171-180. [Korean Literature] https://doi.org/10.7780/kjrs.2012.28.1.171
  30. Spanowicz AG, Jaeger JA. 2019. Measuring landscape connectivity: On the importance of within-patch connectivity, Landscape Ecology, 34; 2261-2278.
  31. Tarabon S, Berges L, Dutoit T, Isselin-Nondedeu F. 2019. Environmental impact assessment of development projects improved by merging species distribution and habitat connectivity modelling, Journal of environmental management, 241; 439-449.
  32. Torres A, Patterson C, Jaeger JA. 2022. Advancing the consideration of ecological connectivity in environmental assessment: Synthesis and next steps forward, Impact Assessment and Project Appraisal, 40(6); 451-459. https://doi.org/10.1080/14615517.2022.2134619
  33. Yoon EJ, KIM J, Lee DK. 2019. Connectivity Assessment Based on Circuit Theory for Suggestion of Ecological Corridor, Journal of Environmental Impact Assessment, 28(3); 275-286. [Korean Literature] https://doi.org/10.14249/EIA.2019.28.3.275