DOI QR코드

DOI QR Code

Mitigation Effect on Airborne Particulate Matter Concentration by Roadside Green Space Type and Impact of Wind Speed

도로변 녹지 유형별 미세먼지 농도 저감 효과와 이에 대한 풍속의 영향 연구

  • 최태영 (국립생태원 생태계서비스팀) ;
  • 강다인 (국립생태원 자연환경조사팀) ;
  • 차재규 (국립생태원 기후탄소연구팀)
  • Received : 2023.10.18
  • Accepted : 2023.12.19
  • Published : 2023.12.31

Abstract

This study measured PM10 concentrations and wind speeds in buffer green spaces and neighborhood parks located along the road, and compared them with roadside measurementresults to understand the effect of mitigating PM10 concentrations by type of green space and the influence of wind speeds on it. As a result of the analysis, the effect of mitigating PM10 concentration was different depending on the type of roadside green space, and an increase in wind speed had a significant effect on reducing PM10 concentration. In buffer green areas with high planting density, wind speed was low and PM10 stagnated inside, resulting in the highest concentration. On the other hand, green areas in neighborhood parks with relatively low planting density had high wind speeds and the lowest PM10 concentration. The non-green area within the neighborhood park recorded the highest wind speed, which was advantageous for the spread of PM10, but the concentration was higherthan that of the green area. Therefore, in orderto reduce PM10 concentration in roadside green space, it is necessary to create green space with good ventilation, and the combined effect of green space and wind speed seems to be more advantageous in reducing PM10 concentration. Green spaces capture and remove PM inside, contributing to reducing the concentration of PM outside. In order to manage PM in the entire city and on roads, it is necessary to increase planting density and leaf area in roadside green spaces, such as buffer green spaces, so that PM can be removed within the green spaces. However, in green spaces such as neighborhood parks that are actively used by city residents, in orderto minimize damage to users due to PM, it is desirable to create green spaces with a structure that allows PM to spread to the outside rather than stagnate inside.

본 연구는 도로변에 위치한 완충녹지와 근린공원에서 미세먼지 농도와 풍속을 실측하고, 이를 도로 측 측정결과와 비교분석하여 녹지 유형별 미세먼지 농도 저감 효과와 그에 대한 풍속의 영향을 파악하고자 하였다. 분석결과 도로변 녹지 유형에 따라 미세먼지 농도 저감 효과가 달랐고, 풍속의 증가는 미세먼지 농도 감소에 유의한 영향을 주었다. 식재밀도가 높은 완충녹지에서는 풍속이 낮고 내부에 미세먼지가 정체되어 미세먼지 농도가 가장 높았다. 반면 식재밀도가 상대적으로 낮은 근린공원 내 녹지지역은 풍속이 높고 미세먼지 농도가 가장 낮았다. 근린공원 내 비녹지지역은 가장 높은 풍속을 기록하여 미세먼지 확산에 유리하였으나 녹지지역보다 미세먼지 농도가 높았다. 따라서 도로변 녹지 내 미세먼지 농도 감소를 위해서는 바람 흐름이 원활한 녹지를 조성해야 하며, 높은 풍속과 수목의 저감 기능의 복합적인 작용이 미세먼지 농도 감소에 더 유리한 것으로 판단되었다. 녹지는 내부에 미세먼지를 포착·제거하여 외부 미세먼지 농도 감소에 기여한다. 도시 전체 및 도로 미세먼지 관리를 위해서는 완충녹지와 같은 도로변 녹지에서 식재밀도나 엽면적 등을 높여 미세먼지가 녹지 내에서 제거될 수 있도록 유도해야 한다. 그러나 도시민의 이용이 활발한 근린공원과 같은 녹지에서는 내부 미세먼지가 외부로 확산이 잘 될 수 있는 구조의 녹지를 조성하여 미세먼지로 인한 이용자의 피해를 최소화하는 것이 바람직하다.

Keywords

Acknowledgement

본 논문은 국립생태원 '생태계서비스 평가 기반 정책 결정 지원체계 수립(NIE-고유연구-2023-03)'의 지원을 받아 수행되었으며, 한국환경생태학회 학술대회논문집 29(2)에 일부 소개된 내용을 수정 및 발전시켰습니다.

References

  1. Beckett KP, Freer-Smith PH, Taylor G. 2000. Particulate pollution capture by urban trees; effect of species and windspeed, Global change biology, 6(8); 995-1003. https://doi.org/10.1046/j.1365-2486.2000.00376.x
  2. Buccolieri R, Gromke C, Di Sabatino S, Ruck B. 2009. Aerodynamic effects of trees on pollutant concentration in street canyons, Sci. of the Total Environ., 407(19); 5247-5256. https://doi.org/10.1016/j.scitotenv.2009.06.016
  3. Bowker GE, Baldauf R, Isakov V, Khlystov A, Petersen W. 2007. The effects of roadside structures on the transport and dispersion of ultrafine particles from highways, Atmos. Environ., 41(37); 8128-8139. https://doi.org/10.1016/j.atmosenv.2007.06.064
  4. Bozilov A, Tasic V, Zivkovic N, Lazovic I, Blagojevic M, Misic N, & Topalovic D. 2022. Performance assessment of NOVA SDS011 low-cost PM sensor in various microenvironments. Environmental Monitoring and Assessment, 194(9); 595.
  5. Cavanagh JAE, Zawar-Reza P, Wilson JG. 2009. Spatial attenuation of ambient particulate matter air pollution within an urbanized native forest patch, Urban forestry & Urban greening, 8(1); 21-30. https://doi.org/10.1016/j.ufug.2008.10.002
  6. Chae HJ. 2009. Effect on the PM10 Concentration by Wind Velocity and Wind Direction, J. Environ. Sanit. Eng., 24(3); 37-54. [Korean Literature]
  7. Chaloulakou A, Kassomenos P, Spyrellis N, Demokritou P, Koutrakis P. 2003. Measurements of PM10 and PM2.5 particle concentrations in Athens, Greece. Atmos. Environ., 37(5); 649-660. https://doi.org/10.1016/S1352-2310(02)00898-1
  8. Chen J, Yu X, Sun F, Lun X, Fu Y, Jia G, Zhang Z, Liu X, Mo L, Bi H. 2015. The concentrations and reduction of airborne particulate matter (PM10, PM2.5, PM1) at shelterbelt site in Beijing, Atmosphere, 6; 650-676. https://doi.org/10.3390/atmos6050650
  9. Choi YJ, Park JK, Jung WS. 2017. Synoptic Meteorological Classification of the Days on Which Asthma Deaths Occurred Due to High PM10 Concentrations in Seoul, J. Environ. Sci. Int., 26(2); 159-172. [Korean Literature] https://doi.org/10.5322/JESI.2017.26.2.159
  10. Cichowicz R, Wielgosinski G, Fetter W. 2020. Effect of wind speed on the level of particulate matter PM10 concentration in atmospheric air during winter season in vicinity of large combustion plant, J. Atmos. Chemistry, 77(1-2).
  11. Freer-Smith PH, Beckett KP, Taylor G. 2005. Deposition velocities to Sorbus aria, Acer campestre, Populus deltoides × trichocarpa 'Beaupre', Pinus nigra and × Cupressocyparis leylandii for coarse, fine and ultra-fine particles in the urban environment, Environ. pollut., 133(1); 157-167. https://doi.org/10.1016/j.envpol.2004.03.031
  12. Gromke C, Buccolieri R, Di Sabatino S, Ruck B. 2008. Dispersion study in a street canyon with tree planting by means of wind tunnel and numerical investigations-evaluation of CFD data with experimental data, Atmos. Environ., 42(37); 8640-8650. https://doi.org/10.1016/j.atmosenv.2008.08.019
  13. Harsono SD, YH NS, Ardinal R. 2022. Implementation Automatic Packet Reporting System (APRS) for Weather Station, Spektral, 3(1); 88-92.
  14. Hoek G, Beelen R, De Hoogh K, Vienneau D, Gulliver J, Fischer P, Briggs D. 2008. A review of land-use regression models to assess spatial variation of outdoor air pollution, Atmos. environ., 42(33); 7561-7578. https://doi.org/10.1016/j.atmosenv.2008.05.057
  15. Hong S, Kang R, An M, Kim J, Jung E. 2018. Study on the Impact of Roadside Forests on Particulate Matter between Road and Public Openspace in front of Building Site: Case of Openspace of Busan City hall in Korea, Korean J. Environ. Ecol., 32(3); 323-331. [Korean Literature] https://doi.org/10.13047/KJEE.2018.32.3.323
  16. Janhall S. 2015. Review on urban vegetation and particle air pollution-Deposition and dispersion, Atmos. Environ., 105; 130-137. https://doi.org/10.1016/j.atmosenv.2015.01.052
  17. Jayaratne R, Liu X, Ahn KH, Asumadu-Sakyi A, Fisher G, Gao J, ... & Morawska L. 2020. Low-cost PM2.5 sensors: An assessment of their suitability for various applications, Aerosol and Air Quality Research, 20(3); 520-532.
  18. Jin S, Guo J, Wheeler S, Kan L, Che S. 2014. Evaluation of impacts of trees on PM2.5 dispersion in urban streets, Atmos. Environ., 99; 277-287. https://doi.org/10.1016/j.atmosenv.2014.10.002
  19. Jung DY. 2022. A Model for Estimating Nearroad Particle Matter Concentrations - Based on Historical Data for Traffic, Meteorology, Background Concentration -, J. Korea Academia-Industrial cooperation Society, 23(11); 897-907. [Korean Literature] https://doi.org/10.5762/KAIS.2022.23.11.897
  20. Kim YP. 2010. Analysis of the trend of atmospheric PM10 concentration over the Seoul Metropolitan Area between 1999 and 2008, J. Environ. Impact Assessment, 19(1); 59-74. [Korean Literature]
  21. Kim HC, Kim S, Kim BU, Jin CS, Hong S, Park R, ... & Stein A. 2017. Recent increase of surface particulate matter concentrations in the Seoul Metropolitan Area, Korea, Scientific reports, 7(1); 4710.
  22. Liu X, Yu X, Zhang Z. 2015. PM2.5 concentration differences between various forest types and its correlation with forest structure. Atmosphere, 6(11); 1801-1815. https://doi.org/10.3390/atmos6111801
  23. Liu HY, Schneider P, Haugen R, Vogt M. 2019. Performance assessment of a low-cost PM2.5 sensor for a near four-month period in Oslo, Norway, Atmosphere, 10(2); 41.
  24. Mei H, Han P, Wang Y, Zeng N, Liu D, Cai Q, ... & Tang X. 2020. Field evaluation of low-cost particulate matter sensors in Beijing, Sensors, 20(16); 4381.
  25. MOE (Ministry of Environment). 2013. Basic Plan on the 2nd stage Metropolitan Area Air Quality Management, Ministry of Enironment, 1107. [Korean Literatre]
  26. NIER (National Institute of Environmental Research). 2016. Annual report of air quality in Korea 2015, National Institute of Environmental Research, 1-362. [Korean Literature]
  27. Nowak DJ, McHale PJ, Ibarra M, Crane D, Stevens J, Luley C. 1998. Modeling the effects of urban vegetation on air pollution, Air pollution modeling and its application XII, Springer Boston MA, 399-407.
  28. Petroff A, Mailliat A, Amielh M, Anselmet F. 2008. Aerosol dry deposition on vegetative canopies, Part I: review of present knowledge, Atmos. Environ., 42(16); 3625-3653. https://doi.org/10.1016/j.atmosenv.2007.09.043
  29. Quality of Urban Air Review Group. 1996. Airborne particulate matter in the United Kingdom, Vol. 3, The Department.
  30. Salim SM, Cheah SC, Chan A. 2011. Numerical simulation of dispersion in urban street canyons with avenue-like tree plantings: comparison between RANS and LES, Building and Environ., 46(9); 1735-1746. https://doi.org/10.1016/j.buildenv.2011.01.032
  31. Samet JM, Dominici F, Curriero FC, Coursac I, Zeger SL. 2000. Fine particulate air pollution and mortality in 20 US cities 1987-1994, New England J. medicine, 343(24); 1742-1749. https://doi.org/10.1056/NEJM200012143432401
  32. Saebo A, Popek R, Nawrot B, Hanslin HM, Gawronska H, Gawronski SW. 2012. Plant species differences in particulate matter accumulation on leaf surfaces, Sci. the Total Environ., 427; 347-354.
  33. Wang X, Teng M, Huang C, Zhou Z, Chen X, Xiang Y. 2020. Canopy density effects on particulate matter attenuation coefficients in street canyons during summer in the Wuhan metropolitan area, Atmos. Environ. 240; 117739.
  34. Wang F, Sun B, Zheng X, Ji X. 2022. Impact of block spatial optimization and vegetation configuration on the reduction of PM2.5 concentrations: A roadmap towards green transformation and sustainable development, Sustainability, 14(18); 11622.
  35. Wu Z, Wang C, Xu J. 2007. Air-borne anions and particulate matter in six urban green spaces during the summer, Journal-Tsinghua University, 47(12); 2153.
  36. Yang J, Chang Y, Yan P. 2015. Ranking the suitability of common urban tree species for controlling PM2.5 pollution, Atmos. pollut. research, 6(2); 267-277. https://doi.org/10.5094/APR.2015.031
  37. Yin S, Shen Z, Zhou P, Zou X, Che S, Wang W. 2011. Quantifying air pollution attenuation within urban parks: an experimental approach in Shanghai, China, Environ. Pollut., 159; 2155-2163. https://doi.org/10.1016/j.envpol.2011.03.009
  38. Zhao H, Che H, Zhang X, Ma Y, Wang Y, Wang H, Wang Y. 2013. Characteristics of visibility and particulate matter (PM) in an urban area of Northeast China, Atmos. Pollut. Research, 4(4); 427-434. https://doi.org/10.5094/APR.2013.049