DOI QR코드

DOI QR Code

P-I-N 역구조 페로브스카이트 태양전지 응용을 위한 Nickel oxide 홀전달층의 열처리 온도 연구

Annealing Temperature of Nickel Oxide Hole Transport Layer for p-i-n Inverted Perovskite Solar Cells

  • 김기성 (물리학과, 국립군산대학교) ;
  • 김미정 (물리학과, 국립군산대학교) ;
  • 김효정 (기초과학연구소, 국립군산대학교) ;
  • 양정엽 (물리학과, 국립군산대학교)
  • Gisung Kim (Department of Physics, Kunsan National University) ;
  • Mijoung Kim (Department of Physics, Kunsan National University) ;
  • Hyojung Kim (The Institute of Basic Science, Kunsan National University) ;
  • JungYup Yang (Department of Physics, Kunsan National University)
  • 투고 : 2023.10.31
  • 심사 : 2023.11.24
  • 발행 : 2023.12.31

초록

A Nickel oxide (NiOx) thin films were prepared via sol-gel process on a transparent conductive oxide glass substrate. The NiOx thin films were spin-coated in ambient air and subsequently annealed for 30 minutes at temperatures ranging from 150℃ to 450℃. The structural and optical characteristics of the NiOx thin films annealed at various temperatures were measured using X-ray diffraction, field emission scanning electron microscopy, and ultraviolet-visible spectroscopy. After optimizing the NiOx coating conditions, perovskite solar cells were fabricated with p-i-n inverted structure, and its photovoltaic performance was evaluated. NiOx thin films annealed at 350℃ exhibited the most favorable characteristics as a hole transport layer, resulting in the highest power conversion efficiency of 17.88 % when fabricating inverted perovskite solar cells using this film.

키워드

과제정보

이 논문은 2023년도 정부 (과학기술정보통신부) 출연 재원으로 한국핵융합에너지연구원 "플라즈마 융합원천 연구사업"의 지원을 받아 수행된 연구임(EN2321-11). 본 연구는 IDEC에서 EDA Tool를 지원받아 수행하였습니다. 본 성과물은 중소벤처기업부에서 지원하는 2022년도 창업성장기술개발사업 전략형(그린뉴딜, S2798421) 의 연구수행으로 인한 결과물임을 밝힙니다.

참고문헌

  1. Bai, Y., Meng, X., and Yang, S., "Interface Engineering for Highly Efficient and Stable Planar p-i-n Perovskite Solar Cells," Advanced Energy Materials., 8, 1701883 (2017). 
  2. Yao, D., Zhang, C., Zhang, S., Yang, Y., Du, A., Waclawik, E. R., Yu, X., Wilson, G. J., and Wang, H., "2D-3D Mixed Organic-Inorganic Perovskite Layers for Solar Cells with Enhanced Efficiency and Stability Induced by n-Propylammonium Iodide Additives," ACS Appl. Mater. Interfaces, 11, 33, 29753-29764 (2019).  https://doi.org/10.1021/acsami.9b06305
  3. Pham, N. D., Zhang, C., Tiong, V. T., Zhang, S., Will, G., Bou, A., Bisquert, J., Shaw, P. E., Du, A., and Wilson, G. J., "Tailoring Crystal Structure of FA0.83Cs0.17PbI3 Perovskite Through Guanidinium Doping for Enhanced Performance and Tunable Hysteresis of Planar Perovskite Solar Cells," Adv. Funct. Mater., 29, 1806479 (2019). 
  4. Saliba, M., Matsui, T., Seo, J.-Y., Domanski, K., Correa-Baena, J.-P., Nazeeruddin, M. K., Zakeeruddin, S. M., Tress, W., Abate, A., Hagfeldt, A., and Gratzel, M., "Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency," Energy Environ. Sci., 9, 1989 (2016). 
  5. Yang, W. S., Park, B.-W., Jung, E. H., Jeon, N. J., Kim, Y. C., Lee, D. U., Shin, S. S., Seo, J., Kim, E. K., Noh, J. H., and Seok, S. I., "Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells," Science, 356, 1376 (2017). 
  6. Gedamu, D., Asuo, I. M., Benetti, D., Basti, M., Ka, I., Cloutier, S. G., Rosei, F., and Nechache, R., "Solvent-Antisolvent Ambient Processed Large Grain Size Perovskite Thin Films for High-Performance Solar Cells," Sci. Rep., 8, 12885 (2018). 
  7. Snaith, H. J., "Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells," J. Phys. Chem. Lett, 4, 3623 (2013). 
  8. Chen, W.-Y., Deng, L.-L., Dai, S.-M., Wang, X., Tian, C.-B., Zhan, X.-X., Xie, S.-Y., Huang, R.-B., and Zheng, L.-S., "Low-cost solution-processed copper iodide as an alternative to PEDOT:PSS hole transport layer for efficient and stable inverted planar heterojunction perovskite solar cells," J. Mater. Chem. A., 3, 19353 (2015). 
  9. Qiu, L., Ono, L. K., and Qi, Y., "Advances and challenges to the commercialization of organic-inorganic halide perovskite solar cell technology," Mater. Today Energy, 7, 169 (2018). 
  10. Md. Bodiul Islam, Masatoshi Yanagida, Yasuhiro Shirai, Orcid, Yoichi Nabetani, and Kenjiro Miyano, "NiOx Hole Transport Layer for Perovskite Solar Cells with Improved Stability and Reproducibility," ACS Omega, 2, 2291 (2017). 
  11. X. Cai a, T. Hu a, H. Hou, P. Zhu, R. Liu, J. Peng, W. Luo, and H. Yu, "A review for nickel oxide hole transport layer and its application in halide perovskite solar cells," Mater. Today Sustainability, 23, 100438 (2023). 
  12. Xu, Z., Wu, J., Wu, T., Bao, Q., He, X., Lan, Z., Lin, J., Huang, M., Huang, Y., and Fan, L., "Tuning the Fermi Level of TiO2 Electron Transport Layer through Europium Doping for Highly Efficient Perovskite Solar Cells," Energy technology, 5, 1820-1826 (2017).  https://doi.org/10.1002/ente.201700377
  13. Choi, D. H., Seok, H.-J., Kim, D.-H., Kim, S.-K., and Kim, H.-K., "Thermally-evaporated C60/Ag/C60 multilayer electrodes for semi-transparent perovskite photovoltaics and thin film heaters," Sci Technol Adv Mater, 21, 435-449 (2020).  https://doi.org/10.1080/14686996.2020.1780472
  14. Saeid Asgary, Hossain Milani Moghaddam, Ali Bahari, and Raheleh Mohammadpour, "Role of BCP layer on nonlinear properties of perovskite solar cell," Solar Energy, 213, 383 (2021) 
  15. Jimenez-Gonzalez, A. E. and Cambray, J. G., "Deposition of NiOx thin films by sol-gel technique, Surface Engineering, 16, 73-76 (2000).  https://doi.org/10.1179/026708400322911573
  16. Li, F., Chen, C., Tan, F., Li, C., Yue, G., Shen, L., and Zhang, W., "Semitransparent inverted polymer solar cells employing a sol-gel-derived TiO2 electron-selective layer on FTO and MoO3/Ag/MoO3 transparent electrode," Nanoscale Res. Lett., 9, 579 (2014). 
  17. Kim, J. H., Kim, M. H., Kim, H. J., and Yang, J. Y., "TiO2 thin film deposition by RF reactive sputtering for n-i-p planar structured perovskite solar cells," Appl. SciConverg. Technol., 31 (5), 116-119 (2022). https://doi.org/10.5757/ASCT.2022.31.5.116