DOI QR코드

DOI QR Code

Composition Analysis of Black Soldier Fly (Hermetia illucens) Larvae Fed with Different Three Single Fruit By-products

과채류 부산물 급이에 따른 아메리카동애등에(Hermetia illucens) 유충의 성분 분석

  • Bonwoo Koo (Industrial Insect and Sericulture Division, Department of Agricultural Biology, National Institute of Agricultural Sciences, RDA) ;
  • Ji Yeong Park (Industrial Insect and Sericulture Division, Department of Agricultural Biology, National Institute of Agricultural Sciences, RDA) ;
  • Yong-Soon Kim (Industrial Insect and Sericulture Division, Department of Agricultural Biology, National Institute of Agricultural Sciences, RDA) ;
  • Ki Hyun Kim (Animal Welfare Research Team, National Institute of Animal Science) ;
  • Kwanho Park (Industrial Insect and Sericulture Division, Department of Agricultural Biology, National Institute of Agricultural Sciences, RDA)
  • 구본우 (농촌진흥청 국립농업과학원 농업생물부 곤충양잠산업과) ;
  • 박지영 (농촌진흥청 국립농업과학원 농업생물부 곤충양잠산업과) ;
  • 김용순 (농촌진흥청 국립농업과학원 농업생물부 곤충양잠산업과) ;
  • 김기현 (농촌진흥청 국립축산과학원 축산생명환경부 동물복지연구팀) ;
  • 박관호 (농촌진흥청 국립농업과학원 농업생물부 곤충양잠산업과)
  • Received : 2023.12.04
  • Accepted : 2023.12.18
  • Published : 2023.12.31

Abstract

As the world population growth and economy develops, the importance of eco-friendly organic waste resource treatment and up-cycling increases. Black soldier fly (BSF) (Hermetia illucens) treats organic waste resources that allows it to be recycled as a feed resource. In this study, we analyzed the nutrients composition, amino acid, and fatty acids of BSF larvae fed three agricultural by-products, namely apple pomace, mandarin waste, and oriental melon waste (mainly generated in South Korea). The highest BSF larvae crude protein and amino acid content was obtained in those fed mandarin waste compared with the other two diets (apple pomace and oriental melon waste). BSF larvae fed apple pomace had the highest crude fat, fatty acid, and lauric acid content compared with the other BSF larvae. Furthermore, all crude protein and fat content of BSF larvae fed the three agricultural by-products exceed that of the original agricultural by-products.

Keywords

Acknowledgement

본 연구는 농촌진흥청 연구사업(연구개발과제명: 동애등에를 이용한 과채류 부산물 분해 및 이용기술 개발, PJ015960)의 지원에 의해 이루어진 것입니다.

References

  1. Association of Official Agricultural Chemists (AOAC), 2005, Official methods of analysis., 18th ed., Association of Official Analytical Chemists, Washington, DC, USA. 
  2. Alexandratos, N., Bruinsma, J., 2012, World Agriculture Towards 2030/2050: the 2012 Revision, FAO, Rome, Italy. 
  3. Banks, I. J., Gibson, W. T., Cameron, M. M., 2014, Growth rates of black soldier fly larvae fed on fresh human faeces and their implication for improving sanitation, Trop. Med. Int. Health., 19, 14-22.  https://doi.org/10.1111/tmi.12228
  4. Cai, M., Hu, R., Zhang, K., Ma, S., Zheng, L., Yu, Z., Zhang, J., 2018, Resistance of black soldier fly (Diptera: Stratiomyidae) larvae to combined heavy metals and potential application in municipal sewage sludge treatment, Environ. Sci. Pollut. Res., 25, 1559-1567.  https://doi.org/10.1007/s11356-017-0541-x
  5. Churchward, C. P., Alany, R. G., Snyder, L. A. S., 2018, Alternative antimicrobials: the properties of fatty acids and monoglycerides, Crit. Rev. Microbiol., 44, 561-570.  https://doi.org/10.1080/1040841X.2018.1467875
  6. Decuypere, J. A., Dierick, N. A., 2003, The combined use of triacylglycerols containing medium-chain fatty acids and exogenous lipolytic enzymes as an alternative to in-feed antibiotics in piglets: concept, possibilities and limitations. An overview, Nutr. Res. Rev., 16, 193-210.  https://doi.org/10.1079/NRR200369
  7. Diener, S., 2010, Valorisation of organic solid waste using the black soldier fly, Hermetia illucens, in low and middle-income countries, Ph. D Dissertation, Eth Zurich, Zurich, Switzerland. 
  8. Ewald, N., Vidakovic, A., Langeland, M., Kiessling, A., Sampels, S., Lalander, C., 2020, Fatty acid composition of black soldier fly larvae (Hermetia illucens) - Possibilities and limitations for modification through diet, Waste Manage., 102, 40-47.  https://doi.org/10.1016/j.wasman.2019.10.014
  9. FAO, 2022, Voluntary Code Conduct for Food Loss and Waste Reduction., FAO, Rome, Italy. 
  10. Fischer, H., Romano, N., 2021, Fruit, vegetable, and starch mixtures on the nutritional quality of black soldier fly (Hermetia illucens) larvae and resulting frass, J. Insects Food Feed, 7, 319-327.  https://doi.org/10.3920/JIFF2020.0100
  11. Furman, D. P., Young, R. D., Catts, P. E., 1959, Hermetia illucens (Linnaeus) as a factor in the natural control of Musca domestica Linnaeus, J. Econ. Entomol., 52, 917-921.  https://doi.org/10.1093/jee/52.5.917
  12. Gao, Z., Wang, W., Lu, X., Zhu, F., Liu, W., Wang, X., Lei, C., 2019, Bioconversion performance and life table of black soldier fly (Hermetia illucens) on fermented maize straw, J. Clean. Prod., 230, 974-980. https://doi.org/10.1016/j.jclepro.2019.05.074
  13. Gasco, L., Finke, M., van Huis, A., 2018, Can diets containing insects promote animal health?, J. Insects Food Feed, 4, 1-4.  https://doi.org/10.3920/JIFF2018.x001
  14. Giannetto, A., Oliva, S., Ceccon Lanes, C. F., de Araujo Pedron, F., Savastano, D., Baviera, C., Parrino, V., Lo Paro, G., Spano, N. C., Cappello, T., Maisano, M., Mauceri, A., Fasulo, S., 2019, Hermetia illucens (Diptera: Stratiomydae) larvae and prepupae: Biomass production, fatty acid profile and expression of key genes involved in lipid metabolism, J. Biotechnol, 307, 44-54.  https://doi.org/10.1016/j.jbiotec.2019.10.015
  15. Kim, J. G., Choi, Y. C., Choi, J. Y., Kim, W. T., Jeong, G. S., Park, K. H., Hwang, S. J., 2008, Ecology of the Black Soldier Fly, Hermetia illucens (Diptera: Stratmyidae) in Korea, KSAE, 47, 337-343.  https://doi.org/10.5656/KSAE.2008.47.4.337
  16. Koo, B., Park, J. Y., Kim, E., Kim, Y., Park, K., 2023, Bioconversion and growth performance of Hermetia illucens in single fruit by-products, International J. Ind. Entomol., 46, 34-40. 
  17. KOSIS, 2022, Vegetable Production(Fruit-bearing Vegetables), https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1ET0027&conn_path=I2&language=en. 
  18. KOSIS, 2022, Fruit Production, https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1ET0292&conn_path=I2&language=en. 
  19. Lalander, C., Diener, S., Zurbrugg, C., Vinneras, B., 2019, Effects of feedstock on larval development and process efficiency in waste treatment with black soldier fly (Hermetia illucens), J. Clean. Prod., 208, 211-219.  https://doi.org/10.1016/j.jclepro.2018.10.017
  20. Liland, N. S., Biancarosa, I., Araujo, P., Biemans, D., Bruckner, C. G., Waagbo, R., Torstensen, B. E.,Lock, E. J., 2017, Modulation of nutrient composition of black soldier fly (Hermetia illucens) larvae by feeding seaweed-enriched media, PloS ONE, 12, e0183188. 
  21. Lim, J. W., Mohd-Noor, S. N., Wong, C. Y., Lam, M. K., Goh, P. S., Beniers, J., Oh, W. D., Jumbri, K., Ghani, N. A., 2019, Palatability of black soldier fly larvae in valorizing mixed waste coconut endosperm and soybean curd residue into larval lipid and protein sources, J. Environ. Manage., 231, 129-136.  https://doi.org/10.1016/j.jenvman.2018.10.022
  22. Meneguz, M., Gasco, L., Tomberlin, J. K., 2018, Impact of pH and feeding system on black soldier fly (Hermetia illucens, L; Diptera: Stratiomyidae) larval development, PloS ONE, 13, e0202591. 
  23. Mohd-Noor, S. N., Wong, C. Y., Lim, J. W., Uemura, Y., Lam, M. K., Ramli, A., Bashir, M. J.,Tham, L., 2017, Optimization of self-fermented period of waste coconut endosperm destined to feed black soldier fly larvae in enhancing the lipid and protein yields, Renew. Energy., 111, 646-654.  https://doi.org/10.1016/j.renene.2017.04.067
  24. Nguyen, T. X., Tomberlin, J., Vanlaerhoven, S., 2015, Ability of Black Soldier Fly (Diptera: Stratiomyidae) Larvae to Recycle Food Waste, Environ. Entomol., 44, 406-410.  https://doi.org/10.1093/ee/nvv002
  25. Oonincx, D., Van Huis, A.,Van Loon, J., 2015, Nutrient utilisation by black soldier flies fed with chicken, pig, or cow manure, J. Insect Food Feed., 1, 131-139.  https://doi.org/10.3920/JIFF2014.0023
  26. Scialabba, N., Muller, A., Schader, C., schmidt, u., Schwegler, P., 2014, Mitigation of Food Wastage Societal Costs and Benefits, FAO, Rome, Italy. 
  27. Spranghers, T., Ottoboni, M., Klootwijk, C., Ovyn, A., Deboosere, S., De Meulenaer, B., Michiels, J., Eeckhout, M., De Clercq, P., De Smet, S., 2017, Nutritional composition of black soldier fly (Hermetia illucens) prepupae reared on different organic waste substrates, J. Sci. Food Agric., 97, 2594-2600.  https://doi.org/10.1002/jsfa.8081
  28. St-Hilaire, S., Cranfill, K., McGuire, M., Mosley, E., Tomberlin, J., Newton, L., Sealey, W., Sheppard, C., Irving, S., 2007, Fish Offal Recycling by the Black Soldier Fly Produces a Foodstuff High in Omega3 Fatty Acids, J. World. Aquac. Soc., 38, 309-313.  https://doi.org/10.1111/j.1749-7345.2007.00101.x
  29. Surendra, K., Olivier, R., Tomberlin, J. K., Jha, R., Khanal, S. K., 2016, Bioconversion of organic wastes into biodiesel and animal feed via insect farming, Renew. Energy, 98, 197-202.  https://doi.org/10.1016/j.renene.2016.03.022
  30. Surendra, K., Tomberlin, J. K., van Huis, A., Cammack, J. A., Heckmann, L. L., Khanal, S. K., 2020, Rethinking organic wastes bioconversion: Evaluating the potential of the black soldier fly (Hermetia illucens (L.)) (Diptera: Stratiomyidae) (BSF), Waste Manage., 117, 58-80.  https://doi.org/10.1016/j.wasman.2020.07.050
  31. UN, 2022, World Population Prospects 2022. United Nations Publication: 52. 
  32. Wang, S. Y., Wu, L., Li, B., Zhang, D., 2020, Reproductive potential and nutritional composition of Hermetia illucens (Diptera: Stratiomyidae) prepupae reared on different organic wastes, J. Econ. Entomol., 113, 527-537.  https://doi.org/10.1093/jee/toz296
  33. Zheng, L., Li, Q., Zhang, J.,Yu, Z., 2012, Double the biodiesel yield: Rearing black soldier fly larvae, Hermetia illucens, on solid residual fraction of restaurant waste after grease extraction for biodiesel production, Renew. Energy, 41, 75-79.  https://doi.org/10.1016/j.renene.2011.10.004